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Abstract

Let A be a finite connected graded cocommutative Hopf algebra over a field k. There is an
endofunctor tw on the stable module category StModA of A which twists the grading by 1. We
show the categorical entropy of tw is zero. We provide a lower bound for the categorical polyno-
mial entropy of tw in terms of the Krull dimension of the cohomology of A, and an upper bound
in terms of the existence of finite resolutions of A-modules of a particular form. We employ these
tools to compute the categorical polynomial entropy of the twist functor for examples of finite
graded Hopf algebras over F2.
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1 Introduction

1.1 On growth and complexity. Homotopy theory abounds with quantitative estimates.

▲ James [Jam57, Corollary 1.22] (resp. Toda [Tod56, Theorem 8.11]) showed that the p-primary
torsion of π∗S2n+1 is annihilated by 22n for p = 2 (resp. by p2n for p odd).

▲ Cohen, Moore, and Neisendorfer showed that for an odd prime p > 3 and n ≥ 3, the
homotopy groups of Ω2(Sn/pr) are annihilated by p2r+1 [CMN87, Proposition 2.5].

▲ Mathew showed that the p-primary torsion of the kernel of the Hurewicz homomorphism
is annihilated by p⌈ℓ(n)/2p − 2⌉ where ℓ is a linear function in n [Mat16, Theorem 1.3], refining
work of Arlettaz [Arl96, Theorem 4.1].

A central theme among these results is uniform rates of growth: James and Toda’s (resp. Arlettaz
and Mathew’s) results identify an exponential dependence of order of π∗ on dimension (resp.
Postnikov tower stage). On the other hand, Cohen-Moore-Neisendorfer’s results are constant with
respect to dimension.

The precise study and quantification of growth rates and complexity is no stranger to dynam-
ical systems. Given a self-map f : X → X of a compact topological space, its topological entropy
htop( f ) ∈ R≥0 ∪ {∞} is a measure of its asymptotic expansion. Topological entropy detects ge-
ometric properties of a system: For instance, let SM be the unit tangent bundle of a Riemannian
manifold (M, g). The manifold SM has a self-map ϕ given by time 1 geodesic flow, and the en-
tropy htop(ϕ) is related to the sectional curvature of g [Man81, Theorem 2]. Beyond measuring
geometric quantities of a dynamical system, topological entropy admits a wealth of comparison
theorems [Gro03, 2.3 Corollaire; Rob99, Remark 1.11 on p.350; Yom87, Theorem 1.1]. Such results
formalize intuitive notions such as: a dynamical system must be at least as complex as a quotient system
or its linearization.

In view of the preceding discussion, asymptotic growth rates are both interesting invariants
in their own right in addition to being a useful way of organizing information, and quantitative
homotopy theory has much to gain from a dynamical perspective on asymptotic growth rates. But
how should one reconcile an analytic approach to growth and complexity with the study of stable
∞-categories that comprise the domain of homotopy theory?
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1.2 Categorical dynamics and homotopy theory. The categorical dynamics of Dmitrov–Haiden–
Katzarkov–Kontsevich [Dim+14] offers a path forward.

Definition 1.2.1. A categorical dynamical system consists of a small stable ∞-category C satisfying a
suitable finiteness condition1 and an exact endofunctor F : C → C.

Given two objects X, Y ∈ C, the complexity δ(X, Y) (Definition 2.1.2) of Y with respect to X
measures the size of Y relative to X by counting the minimal length of a filtration of Y by shifts of
X. Given a categorical dynamical system (C, F : C → C) and a generator G of C, the categorical
entropy hcat(F) ∈ R ∪ {±∞} of F is the exponential growth rate of δ(G, Fn(G)) as n → ∞.

While the categorical entropy measures exponential growth rates, it is designed so as not to see
sub-exponential growth [Dim+14, p. 2.13]. The categorical polynomial entropy hpol(F) is sensitive
to sub-exponential growth, and is related to the study of polynomial dynamical degrees [FFO21,
Corollary 5.9; CP21; Lo 19, §1.3]. Collectively, these notions of entropy quantify fuzzy notions such
as complexity and growth.

Goal 1.2.2. Use categorical entropy and its polynomial variant to describe complexity and growth in stable
homotopy theory.

Certain algebraic objects occupy a special place in homotopy theory–their categories of repre-
sentations are at once good approximations to more topological categories, yet more amenable
to algebraic manipulations than their topological counterparts [BHN22; BL10; DHS88; Lur10;
MM15]. Finite-dimensional connected graded cocommutative Hopf algebras (Definition 3.1.4) are
one such example, arising as algebras of cohomology operations (Example 3.1.10) and as homo-
logical manifestations of connected finite-dimensional topological groups (Example 3.1.8).

Given such a Hopf algebra A over a field k, consider the category of A-representations on per-
fect k-modules ModA(Perfk). We localize away from the perfect A-modules PerfA ⊂ ModA(Perfk)
to obtain the stable module category StModA of A (Definition 3.5.2). There is a dynamical system on
StModA which twists the grading by 1 (Construction 3.5.9).

Theorem 1.2.3. Let A be a finite-dimensional connected graded cocommutative Hopf algebra over a field
k. Consider the endofunctor tw of the stable module category of A given by twisting the grading by 1:

tw : StModA → StModA.

1. The categorical entropy of the twist functor tw satisfies

hcat(tw) = 0.

2. The categorical polynomial entropy hpol of the twist functor admits the following bounds

(a) hpol(tw) ≥ Krull dim H∗(A; k)− 1.

(b) Suppose given a tower under A (Definition 4.2.1) with ℓ+ 1 storeys.

hpol(tw) ≤ ℓ.
1In topological dynamical systems, one typically asks for the underlying topological space to be compact. The relevant

finiteness condition we impose here is that C must have a single compact generator.
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These are given by Theorems 4.2.3 and 4.3.9. A method for obtaining sharper upper bounds for
hpol(tw) is suggested by Corollary 4.4.1. We will explore applications of Yomdin–style estimates
[FFO21, §4] to understanding hpol(tw) in a sequel.

Remark 1.2.4. We use the terminology ‘twist’ to refer to changes in the index of a graded object
and ‘shift’ or ‘suspension’ for a homological degree–or in the terminology of stable ∞-categories,
suspension or desuspension.

We expect the inequality in Theorem 1.2.3(2a) is always an equality, and this is the subject
of ongoing work. The proof of Theorem 1.2.3(2a) utilizes linear-algebraic bounds on categorical
entropy (§2.2), which relies on knowing that StModA is proper. While StModA is proper, it is not
known to be smooth, and Theorem 1.2.3(2b) is not amenable to a similar reduction.

To circumvent this issue, we work directly at the level of stable ∞-categories–in particular,
we rely on a careful analysis of resolutions in StModA. Instead of reducing the computation of
entropy to cohomological computations, we produce specific resolutions in StModA which allow
us to bound the complexity via a downward induction. In particular, a good choice of resolution
leads to better approximations to hpol(tw) (see Observation 4.3.3 and the examples of §5.2). In
proving our result, we exhibit the utility of a homotopical perspective on categorical entropy.

Remark 1.2.5. While the stable module category and the functor tw can be defined for the cat-
egory of modules over any graded Frobenius algebra over k, our assumption that A is a finite
connected graded cocommutative Hopf algebra over k guarantees that H∗(A; k) is both a graded-
commutative ring (Proposition 3.3.8) and has finite Krull dimension by a general result of Wilker-
son [Wil81, Theorem A].

1.3 The genesis of this paper. Theorem 1.2.3 is inspired by parallels between StModA and the
bounded derived category of coherent sheaves on projective space Db(CohPn) and computations
of Dmitrov-Haiden-Katzarkov-Kontsevich and Fan-Fu-Ouchi.

The categorical entropy and the categorical polynomial entropy of twists on coherent sheaves
on projective space is well-understood; the following are special cases of [FFO21, Proposition 6.4]
and [Dim+14, Lemma 2.13].

Proposition 1.3.1. Let k be a field. Write Pn for projective space of dimension n over k. Consider the
autoequivalence −⊗O(1) : Db (CohPn) → Db (CohPn).

1. The categorical entropy of the autoequivalence −⊗O(1) is given by hcat(−⊗O(1)) = 0.

2. The categorical polynomial entropy of the autoequivalence −⊗O(1) is given by

hpol(−⊗O(1)) = n.

The stable module category StModA of a finite connected graded cocommutative Hopf algebra
is a homotopical analogue of the bounded derived category Db (CohPn). To motivate this analogy,
consider the following result due to Bernšteı̆n–Gel'fand–Gel'fand [BGG78]; we follow the presen-
tation of [GM96, §4.3.6].

Let k be a field and V an (n + 1)-dimensional vector space over k. Endow the exterior algebra
Λ :=

∧
k V with the canonical graded-commutative ring structure, where V is placed in grading

1. Any graded Λ-module E and v ∈ V is equipped with morphisms ·v : Ei → Ei+1 for all
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i. Considering these morphisms for all v ∈ V gives morphisms Ei → Ei+1 ⊗ O(1) which we
assemble into a functor defined on discrete graded Λ-modules

Mod♡
Λ Db

(
CohP(V)

)
V = ⊕Vi colim

(
· · · → Vj ⊗O(j) → Vj+1 ⊗O(j + 1) → · · ·

)
.

(1.3.2)

Proposition 1.3.3. [GM96, §4.3.6; BGG78] The functor (1.3.2) descends to an equivalence of stable ∞-
categories

StModΛ → Db
(

CohP(V)

)
where the homotopy category of StModΛ has the same objects as Mod♡

Λ but the morphism spaces are subject
to the equivalence relation φ, ψ : V → W ∈ Mod♡

Λ are identified if their difference factors through a
projective Λ-module (see Definition 3.5.2 and following discussion).

We observe that the algebra Λ =
∧

k V is an example of a finite-dimensional connected graded
cocommutative Hopf algebra over k. We extend this correspondence by observing

▲ The twist by 1 functor tw which acts on a graded module M∗ via M(1)ℓ = Mℓ−1 is sent under
the inverse equivalence of Proposition 1.3.3 to −⊗O(1).

▲ We can extract the dimension dimk V − 1 of our projective space from the left-hand side as
one less than the Krull dimension of the cohomology H∗(Λ; k) (Definition 3.3.2).

Remark 1.3.4. The analogy between stable module categories and categories of sheaves on projec-
tive space is taken further in [Mat15, §9.2].

In view of Proposition 1.3.3 and Example 5.1.1, Theorem 1.2.3 and Proposition 4.4.1 partially gener-
alize Proposition 1.3.1: While Fan–Fu–Ouchi are able to demonstrate equality in Theorem 1.3.1(2),
the upper bound we obtain in Theorem 1.2.3(2a) is weaker. The proof of the results [FFO21, §6]
which are generalized here uses essentially that the bounded derived category of coherent sheaves
Db (CohPn) on a smooth projective variety is itself smooth and proper as a stable ∞-category (Def-
inition 2.2.2). While StModA is proper, it is not known to be smooth. The novelty of our work
lies in the development and application of tools used to obtain such a statement–in particular, a
careful analysis of resolutions in StModA.

1.4 Outline. We collect relevant background on categorical polynomial entropy in §2. Next, we
introduce and collect the requisite background and relevant properties of Hopf algebras in §3. In
particular, we define the stable module category of a Hopf algebra in §3.5. We arrive at a proof of
Theorem 1.2.3 in §4. Finally, we compute the categorical entropy and the categorical polynomial
entropy of the twist functor for many examples of relevant Hopf algebras in §5.

1.5 Notation & Conventions. We assume some familiarity with stable ∞-categories and homo-
logical algebra. The reader who is unfamiliar with stable ∞-categories should feel free to sub-
stitute the term “pre-triangulated k-linear dg category” or “stable model category” for “stable
∞-category” in the following by a result of Cohn [Coh13, Corollary 5.5].
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We use the conventions of stable homotopy theory–e.g., if R is a discrete ring, ModR is used
to refer to the derived ∞-category of module spectra over the Eilenberg-Mac Lane ring spectrum
HR associated to R. The additive 1-category of discrete modules over R is denoted by Mod♡

R
(with special cases such as projective modules and vector spaces automatically assumed to be
discrete). Given an ∞-category C, we write ho C for the (triangulated) homotopy (1-)category of C,
with morphism sets given by homho C(X, Y) = π0 homC(X, Y).

All tensor products and hom are to be taken in the derived sense, unless stated otherwise. We
use the notation Ext−s,−t

A (k, M) := πs,t homA(k, M) = H−s,−t(A; M) interchangeably.
We attempt to follow existing conventions whenever possible, though this inevitably leads

to potentially ambiguous terminology: A graded k-vector space A is said to be connected if it is
concentrated in nonnegative grading and A0 ≃ k (as opposed to being connective with respect to
a t-structure on Perfgr

k ).
If A is a graded ring, we eventually write ModA for graded left A-modules. All algebras are

taken to be associative unless otherwise specified. Given an associative algebra A, a module over
A will refer to a left module. Given an element a ∈ A and a left A-ideal J ⊆ A, we will write
·a : J → J for the map which multiplies by a on the right.

1.6 Acknowledgements. The author thanks Michael Hopkins for invaluable guidance and Laura
DeMarco for (inadvertently) starting her down this path. The author benefited from conversations
with Ben Antieau, Laurent Côté, Paul Goerss, and Kevin Lin. The author thanks Araminta Ama-
bel, Elden Elmanto, Peter Haine, and Noah Riggenbach for detailed comments on an early draft.
The author gratefully acknowledges support from the NSF Graduate Fellowship Research pro-
gram under Grant No. 1745303.

2 Categorical entropy

All results contained in this section can be found in [Dim+14] and [FFO21]; we make no claim to
originality.

2.1 Complexity & its asymptotic growth rates. To motivate the definition of categorical entropy,
we recall the definition of entropy [Wal82, §7.4] of a continuous endomorphism f : X → X of a
(compact) topological space X. Given two open covers U ,V of X, one can measure whether they
are ‘independent’ (or the complexity of V with respect to U ) using Shannon information. Any
self-map f : X → X acts on open covers U of X via pullback. We can measure the complexity of f
by ‘testing’ on a finite open cover U : the entropy h( f ;U ) of f with respect to U is measured by the
independence of the open covers U , f−1U , . . . , f−nU as n → ∞. Then one defines the topological
entropy of f to be the supremum of h( f ;U ) over all finite open covers U of X.

In the setting of a small stable ∞-category C, a generator plays the role of a test object.

Recollection 2.1.1. Given a small stable ∞-category C and a set (Xi)i∈I of objects in C, the thick
subcategory ⟨Xi⟩i∈I generated by the Xi is the smallest stable subcategory of C containing each of
the Xi and closed under finite (co)limits and retracts. Note that if Y ∈ ⟨Xi⟩, then ⟨Xi, Y⟩ = ⟨Xi⟩.
We say that an object X ∈ C in a stable ∞-category is a generator if ⟨X⟩ = C.

We begin by introducing a measure of relative complexity between objects in a stable ∞-category,
then define the entropy of an endofunctor F in terms of the relative complexity of F evaluated on
our test object.
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Definition 2.1.2. [Dim+14, Definition 2.1] Let C be a stable ∞-category. Given two objects X, Y ∈ C,
we define the complexity δ(X, Y) of Y with respect to X to be the infimum

δ(X, Y) = inf
{
ℓ

∣∣∣∣ there exist objects equipped with a filtration 0 = Y0 → Y1 → · · · → Yℓ

such that cofib(Yi−1 → Yi) ≃ X[ni] for all i and Y is a retract of Yℓ

}
if Y is in the thick subcategory generated by X, or ∞ otherwise.

Note that our definition of δ(X, Y) agrees with the complexity of Dimitrov–Haiden–Katzarkov–
Kontsevich [Dim+14, Definition 2.1] in the homotopy triangulated categoy ho C.

Remark 2.1.3. We restrict our focus to the value of the complexity function of [Dim+14, Definition
2.1] at t = 0. See also Remark 2.1.16.

Observation 2.1.4. The complexity δ(X, Y) counts the number of copies of (shifts of) X in a minimal
filtration of Y. The reader may choose to think of δ(X, Y) as the size of Y relative to X. In particular,
δ(X, Y) is insensitive to (de)suspension, i.e. δ(X, ΣY) = δ(X, Y).

Lemma 2.1.5. [Dim+14, Proposition 2.2] Let C be a stable ∞-category. The complexity δ(−,−) satisfies
the properties

1. For any X, Y, Z ∈ C, δ(X, Z) ≤ δ(X, Y) · δ(Y, Z)

2. Given any cofiber sequence X → Y → Z and any object W, δ(W, Y) ≤ δ(W, X) + δ(W, Z)

3. Given any exact functor F : C → D and X, Y ∈ C, δ(X, Y) ≥ δ(F(X), F(Y)).

Next we introduce a notion which will allow us to generalize Lemma 2.1.5(2). The key point is
the

Idea 2.1.6. The complexity of an object X can be controlled by the total complexity of a finite
resolution of X.

We begin by axiomatizing what we mean by ‘resolution.’

Definition 2.1.7. Let C be a stable ∞-category and suppose given a finite sequence of composable
morphisms

Xn
fn−→ Xn−1

fn−1−−→ · · · X0
f0−→ X−1 (2.1.8)

in C.

1. The sequence (2.1.8) is a chain complex if each fi−1 ◦ fi is nullhomotopic.

2. Suppose given a sequence (2.1.8) which is a chain complex. We define recursively

(a) When n = 0, (2.1.8) is a length 0 resolution of X−1 if f0 is an equivalence X0 ≃ X−1.

(b) When n > 0, (2.1.8) is a length n resolution of X−1 if

cofib(Xn → Xn−1)
fn−1−−→ Xn−2

fn−1−−→ · · · X0
f0−→ X−1

is a length n − 1 resolution of X−1, where the homotopy class of fn−1 is determined by
the condition that fn−1 ◦ fn ≃ 0.
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3. Let a length n resolution of X−1 (2.1.8) be given. Writing Z0 = X0 and Zn = Xn and Zi ≃
cofib(Zi+1 → Xi), the data of a resolution is equivalently the data of n cofiber sequences:

Zi+1
hi−→ Xi

gi−→ Zi. (2.1.9)

We define the associated morphism classifying the resolution (2.1.8) to be the homotopy class
of the composite

X0 → cofib( f0) ≃ ΣZn−2 → Σ2Zn−3 · · · → Σn−2Z1 → Σn−1X0 (2.1.10)

where each composite is a shift of the canonical map Zi → cofib(gi) ≃ Σfib(gi) ≃ ΣZi−1.

Remark 2.1.11. Though it may seem unnatural to ask for nullhomotopies in an ∞-category as a
property or to avoid defining resolutions in a suitably functorial way, our main purpose for this
definition is for explicit bounds (cf. Lemma 2.1.13 and its application in Proposition 4.1.4).

Examples 2.1.12. ▲ A resolution of length 1 is a cofiber sequence X1 → X0 → X−1.

▲ A resolution of length 2 is a sequence of morphisms X2
f2−→ X1

f1−→ X0
f0−→ X−1 such that each

composable pair is nullhomotopic and there exist nullhomotopies inducing an equivalence
cofib( f2) ≃ fib( f0).

▲ Let A be a nice abelian category. Let Pn → Pn−1 → · · · → P0 → M be a projective resolution
of M ∈ A. Then it is a resolution in the sense of Definition 2.1.7 in the derived category
D(A) [Lur17, Definition 1.3.5.8].

We record an observation which will be used in §4.

Lemma 2.1.13. Let C be a stable ∞-category and let Y ∈ C. Suppose given an exact sequence (2.1.8) in C.
Then

δ(Y, Xn) ≤
n

∑
i=1

δ
(

Y, Σi−1Xn−i

)
. (2.1.14)

Proof. This follows from consideration of Lemma 2.1.5(2) applied to the exact sequences of (2.1.9).

Definition 2.1.15. [Dim+14, Definition 2.4; FFO21, Definition 2.4] Let C be a stable ∞-category
with a generator G, and suppose F : C → C is an exact endofunctor. Then the categorical entropy of
F is

hcat(F) := lim
n→∞

log δ(G, Fn(G))

n

and the categorical polynomial entropy of F is

hpol(F) := lim sup
n→∞

log δ(G, Fn(G))− n · hcat,t(F)
log n

.

Note that our definition of hcat(F) (resp. hpol(F)) agrees with the categorical entropy [Dim+14,
Definition 2.4] (resp. categorical polynomial entropy [FFO21, Definition 2.4]) functor F induces on
the triangulated category ho C.
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Remark 2.1.16. In the language of [Dim+14; FFO21], we have defined the values of the categori-
cal entropy function hcat,−(F) : R → R ∪ {−∞} and the categorical polynomial entropy function
hpol,−(F) : R → R ∪ {−∞} when t = 0. These values might be interpreted as ‘geometric’ (Obser-
vation 2.1.19).

We collect a few basic properties of categorical entropy below.

Proposition 2.1.17. [Dim+14, Lemma 2.5] Let C be a small stable ∞-category admitting a single generator,
and F an exact endofunctor of C. Then

▲ The categorical entropy hcat(F) and the categorical polynomial entropy hpol(F) of F are well-defined,
i.e. their defining limits exist in R ∪ {−∞}.

▲ The categorical entropy hcat(F) and the categorical polynomial entropy hpol(F) of F are independent
of a choice of generator of C.

▲ The categorical entropy and the categorical polynomial entropy of the identity endofunctor are identi-
cally zero: hcat(idC) = hpol(idC) = 0.

Remark 2.1.18. Categorical entropy is meant to measure the complexity of a functor. It makes
sense that the entropy of the identity functor is zero.

Observation 2.1.19. A special case of categorical entropy can be related to topological entropy.
For instance, let C = Db(CohX) be the bounded derived category of coherent sheaves on a smooth
projective variety X over the complex numbers. A self-map f : X → X of X induces a pullback
functor F = f ∗ : C → C. Under a certain condition on f ∗, the categorical entropy of f ∗ is bounded
from below by the logarithm of the spectral radius of the induced linear map f ∗ on Kähler differen-
tials Ωn

X/C
by [Dim+14, Theorem 2.8] and the Hochschild–Kostant–Rosenberg theorem [HKR62].

When f is surjective, the formality of Kähler manifolds [Del+75, Main Theorem] and the Gromov-
Yomdin theorem [Gro03, 2.3 Corollaire; Yom87, Theorem 1.1] imply that the latter is equal to the
topological entropy of f .

2.2 Linear-algebraic bounds. A classical theorem of Yomdin [Yom87] provides a lower bound
for the entropy of a C∞-smooth self-map of a compact real manifold M in terms of the induced
map on cohomology H∗(M; R).

Homological bounds for topological entropy are obtained under certain niceness conditions
on the underlying space and map. The relevant niceness condition(s) for stable ∞-categories are
smoothness and properness, which together are known as dualizability. We characterize these
conditions following the exposition of [AG14, §3.2].

Recollection 2.2.1 (k-linear stable ∞-categories). Let k be a commutative ring. Let PrL be the cat-
egory of presentable stable ∞-categories and left exact functors [Lur09, Definition 5.5.3.1]. Then
Modk is an E∞-algebra object in PrL. Write Catk = ModModk

(PrL) for the category of k-linear
presentable stable ∞-categories, and Catω

k for the category of compactly-generated k-linear cate-
gories and colimit-preserving functors that preserve compact objects. The category Catk inherits a
symmetric monoidal structure from PrL by [Lur17, Proposition 4.5.3.1], which we denote by ⊗k.

Given C ∈ Catk, its dual is the functor category

C∨ = FunL
k (C, Modk)

in Modk. There is a functorial evaluation map

C ⊗k C∨ → Modk .
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Definition 2.2.2. [AG14, Definition 3.8] The k-linear category C ∈ Catk is dualizable if there exists a
coevaluation map

coev : Modk → C∨ ⊗k C
which classifies C as a C∨ ⊗k C and such that both composites

C idC⊗coev−−−−−→ C ⊗k C∨ ⊗k C
ev⊗idC−−−−→

C∨ coev⊗idC−−−−−→ C∨ ⊗k C ⊗k C∨ idC⊗kev−−−−→ C∨

are equivalent to the identity.
A compactly-generated k-linear category C ∈ Catω

k is proper if its evaluation map preserves
compact objects; it is smooth if it is dualizable and its coevaluation map is in Catω

k .
Finally, a small stable k-linear category D is proper (resp. smooth) if its Ind-completion Ind(D)

is.

Example 2.2.3. Let C = ModA for some k-algebra A. Then by the discussion following [AG14,
Definition 3.8],

▲ The category C is proper if and only if A is proper as a k-module.

▲ The category C is smooth if and only if A is perfect as an A ⊗k Aop-module.

Warning 2.2.4. The literature calls a dg-algebra A smooth if its category of modules ModA is. On
the other hand, suppose k is a perfect field and consider a discrete commutative ring B as a dg-
algebra Bc concentrated in degree zero. Then smoothness of Bc corresponds to regularity of B in
the sense of ordinary commutative algebra by [Lun10, Propositions 3.8 & 3.13].

Proposition 2.2.5. Let k be a field, and suppose C is a k-linear stable ∞-category and G is a compact
generator of C. If C is proper, then

hcat(F) ≥ lim
N→∞

1
N

log ∑
ℓ

dimk Ext−ℓ(G, FN(G))eℓt

hpol(F) ≥ lim sup
N→∞

1
log N

(
log ∑

ℓ

dimk Ext−ℓ(G, FN(G))eℓt − Nhcat(F)

)
.

If C is smooth, then the reverse inequality holds.

Proof. This follows from an examination of the proofs of [Dim+14, Theorem 2.6] and [FFO21,
Lemma 2.7].

3 Graded Hopf algebras

A cohomology theory E : Spcop → Ab is an invariant of spaces. Any E admits cohomology opera-
tions–in particular they may be assembled into a graded Hopf algebra E∗E [Ste47, Theorem 6.10;
Ste53, p.215]. Considering E as valued in modules over its algebra of operations provides a more
refined invariant lifting E. In particular, two spaces X, Y which are not homotopy equivalent may
have abstractly isomorphic E-cohomology groups but lift to different E∗E-module structures. We
can do even better–the Adams spectral sequence [Ada58, Theorem 2.1] has E2-page the cohomol-
ogy of E∗E and converges to (a localization of) the stable homotopy groups of spheres.
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In this section we provide a terse summary of the requisite background on graded Hopf alge-
bras and their module categories. The interested reader should refer to [MM65; Swe69] for more
context and history. The reader who is not interested in absurd generalities should feel free to
consider one of Examples 3.1.8 or 3.1.10 in place of A throughout. After introducing definitions
and establishing conventions in §3.1, we describe the analogue of short exact sequences for Hopf
algebras in §3.2 and recall a result of Wilkerson guaranteeing the existence of extensions of a cer-
tain form. We collect tools for computing Hopf algebra cohomology in §3.3 and introduce the
stable module category in §3.5. A less computationally-minded reader should feel free to black
box Propositions 3.3.15 and 5.2.9 on a first read.

3.1 Definitions. Let Zδ be the discrete category (i.e., no nonidentity morphisms) with objects
given by the integers. The category Zδ has a symmetric monoidal structure given by addition of
integers.

Recollection 3.1.1. Let k be a field, and let Vectgr
k = Mod♡,gr

k = Fun(Zδ, Vectk) be the category of
Z-graded k-vector spaces.

(a) Given a graded k-vector space A, we will refer to its image under the forgetful functor
u : Vectgr

k → Vectk, u : V 7→ ⊕
ℓ∈Z Vℓ as its underlying k-module.

(b) A graded k-vector space A is said to be finite-dimensional or finite if its underlying k-module
is finite-dimensional, and levelwise finite-dimensional if Aℓ is finite-dimensional over k for all
ℓ.

Given a levelwise finite-dimensional graded k-vector space A, its Hilbert or Poincaré series is
the formal power series pA(t) := ∑ℓ(dimk Aℓ)tℓ.

(c) Let V be an ungraded k-vector space. For any integer n, we write V(n) for the graded k-
vector space which is V in grading n and zero otherwise.

For every integer a ∈ Z, there is an automorphism (a) on graded k-vector spaces given by
precomposing with the automorphism Z

−a−→ Z, i.e. this is given by M(a)ℓ = Mℓ−a.

(d) Since Vectk has a monoidal structure given by ⊗k, Vectgr
k inherits a monoidal structure via

Day convolution. On objects, the tensor product in Vectgr
k of A, B ∈ Vectgr

k is given by

(A ⊗ B)ℓ =
⊕

m
Am ⊗k Bℓ−m,

with unit given by 1ℓ = k if ℓ = 0 and 0 otherwise. The tensor product on Vectgr
k is canon-

ically symmetric monoidal via an isomorphism τ : A ⊗ B ≃ B ⊗ A which obeys the Koszul
sign rule, i.e. which picks up a sign of (−1)pq on the component Ap ⊗ Bq.

(e) We will denote the category of associative algebras in Vectgr
k with respect to this symmetric

monoidal structure by GrAlg♡
k . Observe that GrAlg♡

k inherits a symmetric monoidal struc-
ture ⊗ from Vectgr

k .

(f) We may regard Vectgr
k and Modgr

k as being enriched over itself: we can consider

HomModgr
k
(M, N)−ℓ := HomFun(Zδ ,Vectk)

(M, N(ℓ))

11



and likewise for Modgr
k . In particular, taking N = k(0), we have a duality functor (−)∨ : Vectgr,op

k −→ Vectgr
k

such that M∨
ℓ = homk(M−ℓ, k).

Given a graded k-module spectrum M, its homology groups are bigraded: Exts,t(k, M) =
πs homFun(Zδ ,Modk)

(k(t), M). When a bigraded group arises as the bigraded homology groups
of a graded k-module spectrum, we refer to s as the (co)homological grading and t as the in-
ternal grading or weight.

Remark 3.1.2. Taking duals restricts to an equivalence between levelwise finite-dimensional com-
mutative (resp. associative) algebras in Vectgr

k and levelwise finite-dimensional cocommutative
(resp. coassociative) coalgebras in Vectgr

k .

We say that a graded k-vector space is connected if Aℓ = 0 if ℓ < 0 and A0 = k, and a graded
k-algebra is connected if its underlying k-vector space is.

Warning 3.1.3. There is a clash of terminology here: A graded k-vector space A is said to be con-
nected if it is concentrated in nonnegative grading and A0 ≃ k in the convention of [MM65, p.26].
This is to be contrasted with its other possible interpretation of being connective with respect to a
t-structure on Perfgr

k .

Definition 3.1.4. Let k be a field and let A be a graded algebra in k-vector spaces. Suppose we are
given a collection of morphisms in GrAlg♡

k

▲ ∆ : A → A ⊗k A,

▲ ε : A → k, and

▲ c : A → Aop where Aop is the opposite algebra to A

such that ∆, ε, c form the comultiplication, counit, and coinverse of a cocommutative cogroup
structure on A ∈ GrAlg♡

k . We say the data of (A, ∆, ε, c) is a cocommutative, graded Hopf algebra
over k. Often c is referred to as an antipode or conjugation.

A morphism of finite-dimensional, graded, cocommutative Hopf algebras over k is a morphism
of graded k-algebras ϕ : A → B which respects the cogroup structures on A and B. Given such a
morphism ϕ : A → B, A is said to be a sub-Hopf algebra (resp. B is a quotient Hopf algebra of A) of B
if the morphism ϕ is injective (resp. surjective).

A graded Hopf algebra over k is said to be connected (resp. finite-dimensional) if its underlying
graded k-vector space is.

We write I(A) := ker(ε : A → k) and call I(A) the augmentation ideal of A.

Observation 3.1.5. Spelling out the commutativity (resp. cocommutativity) axiom in more detail,
this asks for the following diagrams

A ⊗ A A ⊗ A

A

τ

µ µ
and

A

A ⊗ A A ⊗ A

∆ ∆

τ

to commute. By definition of τ, this agrees with what is often referred to as graded-(co)commutative.

We will occasionally drop ∆, ε, c and say A is a graded Hopf algebra over k if the Hopf algebra
structure is understood.

12



Remark 3.1.6. Suppose A is a connected graded bialgebra over a field k (that is, a graded Hopf al-
gebra minus the assumption of an antipode). Then an antipode for A exists automatically [Mar83,
p. 185-6]. Thus we do not specify the antipode in the following examples.

Example 3.1.7 (Trivial Hopf algebra). The symmetric monoidal unit 1 = k(0) is canonically a finite
connected graded bicommutative Hopf algebra over k. The object 1 is both initial and terminal in
the category of finite-dimensional connected graded cocommutative Hopf algebras over k.

Example 3.1.8. Let G a compact, connected Lie group over R. Then the Pontrjagin product on
H∗(G; k), combined with the Künneth isomorphism, makes H∗(G; k) into an example of a finite
connected graded algebra over k. The diagonal map ∆ : G → G × G induces a cocommutative
coproduct on H∗(G; k) making H∗(G; k) into a connected graded cocommutative Hopf algebra
over k.

Observation 3.1.9. Let A be a Hopf algebra over k. Then taking k-linear duals exhibits a bijection
between sub-Hopf algebras of A and quotient Hopf algebras of the dual A∨.

Example 3.1.10 (Sub-Hopf algebras of the Steenrod algebra). Observation 3.1.9 has been employed
to make the following identification. We write A for the mod 2 Steenrod algebra and A∗ for its
dual. The Hopf algebra A is the algebra of cohomology operations HF∗

2 HF2 for singular coho-
mology theory with F2 coefficients. Let

E :=
{

e : {1, 2, . . .} → Z≥0 ∪ {∞}
∣∣∣∣e(i) ≥ min

j<i
{e(j), e(i − j)− j} for all i

}
.

Anderson and Davis showed [AD73] that the assignment e 7→ A∗/
(
ζ

ei
i
)

defines a bijection from
E to the collection of sub-Hopf algebras of A. The sub-Hopf algebra associated to an exponent
sequence e is finite over F2 if and only if e(i) = 1 for all but finitely many i.

We write An for the sub-Hopf algebra of A corresponding to the exponent sequence {n +
1, n, . . . , 1, 0, 0, . . .}. Then [Lin73, Chapter II] has shown

1. The sub-Hopf algebra An of A is exactly the sub-Hopf algebra generated by Sq1, . . . , Sq2n
.

2. The An exhaust the nice sub-Hopf algebras of A; that is, these are the only sub-Hopf algebras
of A which admit an A-action which is compatible with the inclusion An ⊆ A. Here An acts
on itself by multiplication.

While A is not bicommutative, it is cocommmutative. Multiplication in the Steenrod algebra is
governed by the Adem relations [Ade52, Theorem 1.1]: for all s > t,

Sq2tSqs =
t

∑
j=0

(
s − t + j − 1

2j

)
Sqt+s+jSqt−j (3.1.11)

where the binomial coefficients are to be interpreted mod 2 and (k
j) = 0 if j > k.

3.2 Extensions of Hopf algebras. A short exact sequence of groups {e} → N ⊴ G → G/N → {e}
exhibits G as being built or glued from N and G/N in a twisted manner. There is an analogous
notion of a Hopf algebra C being a twisted product or extension of a quotient Hopf algebra by a
normal sub-Hopf algebra.
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Definition 3.2.1. Let A, B, C be connected graded Hopf algebras over k. A pair of morphisms of
Hopf algebras i : A → B, p : B → C is said to exhibit B as a Hopf algebra extension of C by A if there
exists a map B → A⊗k C which is both an isomorphism of left A-modules and right C-comodules.

Remark 3.2.2. In particular, given any such extension we have k ⊗A B ≃ C by [MM65, Proposition
4.9].

We isolate a particularly nice class of extensions generalizing the notion of central extensions
of groups.

Definition 3.2.3. [Gug62, §6] A map of graded k-algebras φ : A → B in GrAlgk is said to be central
if the following diagram commutes

A ⊗ B B ⊗ A

B ⊗ B B ⊗ B

B

τ

φ⊗id id⊗φ

µB µB

.

There is a dual notion for maps of graded k-coalgebras.

A Hopf algebra extension A i−→ B
p−→ C is central if i is a central map of algebras and p is a

central map of coalgebras.

Example 3.2.4. Let A1 be the sub-Hopf algebra of the Steenrod algebra generated by Sq1, Sq2 (see
Example 3.1.10). Recall that Sq1 and Sq2 do not commute, and we write Q1 = [Sq1, Sq2] for their
commutator. Then there is a central extension of cocommutative, finite-dimensional Hopf algebras

F2 → F2[Q1]/(Q2
1) → A1 →

∧
F2

[Sq1, Sq2] → F2

over F2.

Next we characterize a class of relatively simple commutative Hopf algebras, and recall a result
of Wilkerson which shows these are ‘building blocks’ for the more complicated Hopf algebras we
will eventually consider.

Definition 3.2.5. Let A be a Hopf algebra. Given an element a ∈ A, its height is the minimal
h ∈ Z>0 such that ah = 0.

A Hopf algebra A over a field k of characteristic p is elementary if all elements in the augmenta-
tion ideal have height p, i.e. Ip.

A Hopf algebra A is monogenic if T can be taken to consist of a single element.
Given a graded Hopf algebra A, a collection of elements T ⊆ A is said to generate A if T

generates A as an algebra.

Recall that an element of a Hopf algebra a ∈ A is said to be primitive if its image under the
comultiplication is given by ∆(a) = 1 ⊗ a + a ⊗ 1.

Examples 3.2.6 (Monogenic Hopf algebras of minimal height). [Wil81] Let k be a field of any
characteristic.
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1. There is a monogenic elementary Hopf algebra
∧

k[x] where x is primitive, for x in any degree
if char k = 2 or x in odd degrees when char k = p or 0.

2. If char k is odd, then k[x]/(xp) with x primitive in even grading is an elementary Hopf
algebra.

Recollection 3.2.7. Borel’s structure theorem [Bor53, Théorème 6.1] characterizes all bicommuta-
tive Hopf algebras over a perfect field as tensor products of monogenic Hopf algebras.

In fact when char k = 0 we have the following characterization.

Proposition 3.2.8. [Wil81, Proposition 1.1] Let A be a finite-dimensional connected graded cocommutative
Hopf algebra over a field k characteristic zero. Then A is isomorphic as a Hopf algebra to a tensor product of
exterior algebras.

The following result of Wilkerson can be thought of as a generalization of Borel’s result to
associative, cocommutative Hopf algebras.

Proposition 3.2.9. [Wil81, Proposition 1.2] Let A be a finite-dimensional connected graded cocommutative
Hopf algebra over a field k of arbitrary characteristic. Then there exists a nontrivial monogenic sub-Hopf
algebra C of A of minimal height. In particular C can be taken to be a monogenic Hopf algebra of the forms
in Examples 3.2.6.

In particular, we can write A as an extension of C by k ⊗C A =: B.

3.3 Modules and base change. Let A be a graded Hopf algebra over k. In this section we give
both a model-independent description of the cohomology of A, and also introduce explicit tech-
niques and resolutions for computing the (bigraded) cohomology groups of A. In particular, we
show that when A is cocommutative, its cohomology is a graded-commutative ring, so the Krull
dimension of H∗(A; k) is well-defined. The latter result is the only part of this section used in §4;
computational tools for understanding Hopf algebra cohomology will not be used until §5.

Recall our notation Mod♡
A for the abelian (1-)category of discrete, graded modules over A.

Since taking Eilenberg–Maclane spectra H(−) : Vectk → Modk(Sp) is symmetric monoidal, we
can equivalently regard A as a bialgebra in graded Hk-module spectra. We will abuse notation
by writing A for the image of A under the above map, and we write ModA for the ∞-category
of modules in graded spectra over HA. Write ModA (Perfk) for the ∞-category of graded left
A-module spectra whose underlying spectrum is perfect over k.

From now on, we suppress “gr”–all modules are understood to be graded unless specified
otherwise.

Remark 3.3.1 (Functoriality). Given a map of graded Hopf algebras φ : A → B, we have corre-
sponding restriction

φ∗ : ModB → ModA φ∗ : Mod♡
B → Mod♡

A

and induction functors

B ⊗A − : ModA → ModB B ⊗♡
A − : Mod♡

A → Mod♡
B .

If B⊗A k is a perfect k-module, then the induction functor further restricts to functor ModA (Perfk) →
ModB (Perfk). In general the forgetful functor ModB → ModA descends to a functor PerfB →
PerfA if and only if B is a perfect A-module.
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A special case of the previous is the

Definition 3.3.2. Given a graded Hopf algebra A over a field k, restriction along the counit ε :
A → k gives a functor Modgr

k → Modgr
A . The restriction functor admits both left and right adjoints,

given respectively by

ModA → Modk

(−)A : M 7→ M ⊗A k

(−)A : M 7→ homA(k, M)

Again regarding k as an A-module via the counit, the image of k under the left, right adjoints are
denoted by kA = C∗(A; k) the homology of A and kA = C∗(A; k) the cohomology of A.

We will use freely the following characterization.

Proposition 3.3.3. Let k be a field and let A be a Z-graded associative k-algebra which is levelwise discrete.
Then

πs,tk ⊗A k ≃ TorA
s,t(k, k)

π−s,−t homA(k, k) ≃ Exts,t
A (k, k)

Proof. The first equivalence is a straightforward generalization of [Lur17, Corollary 7.2.1.22] to
the graded case. The second equivalence is a straightforward generalization of [Lur17, Remark
7.1.1.16] to the graded case.

Remark 3.3.4. Note that composition on homA(k, k) makes the bigraded homotopy groups Exts,t
A (k, k)

into an (a priori) graded, associative k-algebra. This is often referred to as the Yoneda product.

Warning 3.3.5. We abuse notation and use homology (resp. cohomology) of A to refer to both the
graded spectra k ⊗A k (resp. homA(k, k)) and their (bigraded) homotopy groups. For instance, the
Krull dimension of the cohomology of A refers to the Krull dimension of the graded ring H∗(A; k).
We make note of the grading convention πs,t homA(k, k) = Ext−s,−t

A (k, k) = H−s,−t(A; k). We write
Hs(A; k) for the graded abelian group Hs,∗(A; k).

We warn the reader unfamiliar with spectra and stable homotopy that for a general spectrum
X, π∗X contains less information than X.

While the aforementioned descriptions of Hopf algebra cohomology are elegant, to compute
the Krull dimension of H∗(A; k) in specific cases we will want to use more explicit descriptions.

Construction 3.3.6 (Cobar construction). [Rav03, Definition A.2.11; Ada60, p.32-33] Let A be a
graded biassociative Hopf algebra over k, and let M (resp. N) be a left (resp. right) comodule over
A. We write A := coker(η : k → A) for the cokernel of the unit, or the dual of the augmentation
ideal of A∨ (Definition 3.1.4). Define the cobar complex coBarA(N; M) to be the cosimplicial graded
abelian group

coBarA(N; M)s := N ⊗k A⊗s ⊗k M

with coboundary ds : coBarA(N; M)s → coBarA(N; M)s+1 given by

ds(n⊗ γ1 ⊗ · · · ⊗ γs ⊗m) = φ(n)⊗ γ1 · · · ⊗ γs ⊗ψ(m) +
s

∑
i=1

(−1)in⊗ · · · ⊗∆(γi)⊗ · · · ⊗ γs ⊗m

+ (−1)s+1n ⊗ · · · ⊗ γs ⊗ ψ(m)
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where ψ and φ are the comodule structure maps. We abbreviate n⊗γ1 · · ·⊗γs ⊗m = nγ1|γ2| · · · |γsm
and give it the usual grading, i.e. the grading degree of nγ1|γ2| · · · |γsm is ∑s

i=1 |γi|+ |n|+ |m|.
When M = N = k, we may define a bilinear “juxtaposition product” [McC85, discussion after

Corollary 9.6]

coBarA(k; k)p ⊗ coBarA(k; k)q → coBarA(k; k)p+q

(γ1|γ2| · · · |γp)⊗ (η1| · · · |ηq) 7→ γ1|γ2| · · · |γp|η1| · · · |ηq.

The following is [Rav03, Corollary A.2.12].

Proposition 3.3.7. Let k be a field, and let A be a graded Hopf algebra over k. Then the cohomology of the
cosimplicial graded abelian group coBarA∨(k; k) computes

HscoBarA∨(k; k)t = Exts,t
A (k, k).

Proposition 3.3.8. [McC01, Theorems 9.7 & 9.8] Let A be a graded Hopf algebra over k.

1. The composition product of Remark 3.3.4 and the juxtaposition product of Construction 3.3.6 coincide
on bigraded homotopy groups.

2. If the coproduct on A is cocommutative, then the multiplication on Exts,t
A (k, k) is graded-commutative.

The cobar complex is highly inefficient; a characterization of efficient resolutions is the

Definition 3.3.9. [McC01, Definition 9.3] Let A be a discrete augmented ring over k and write
ε : A → k for the augmentation and I = ker(ε). A homomorphism of discrete left A-modules
f : M → N is minimal if f (M) ⊆ I · N. A projective resolution of a module M is minimal if every
homomorphism in the resolution is minimal.

Proposition 3.3.10. [McC01, Proposition 9.4] Let A be a discrete augmented ring over k and write ε : A →
k for the augmentation and I = ker(ε). Let M be a left A-module and suppose given · · · P2 −→ P1 −→
P0 −→ M a minimal resolution of M by projective left A-modules. Then Exts

A(M, k) ≃ homA(Ps, k).

Example 3.3.11. Let A =
∧

k(e1, . . . , en) be an exterior algebra where each ei is primitive. Then
Exts,t

A (k, k) ≃ k[x1, . . . , xn] where |xi| = (1, |ei|).
While this computation may be well-known, we include it for completeness. For each Ai =∧

k(ei), there is a minimal periodic projective resolution of k by Ai-modules

· · · Ai(2|ei|)
·xi−→ Ai(|ei|)

·xi−→ Ai → k.

Tensoring these resolutions together over k and taking the diagonal gives a minimal resolution
k ≃ lim M• of k by projective A-modules. The computation follows from Proposition 3.3.10.

Furthermore, the cocommutativity of A allows us to identify Steenrod operations on Hopf
algebra cohomology [May70, Theorem 11.8; Liu62, §II.5].

Proposition 3.3.12 (Steenrod operations on Hopf algebra cohomology). Let A be a graded, connected,
cocommutative Hopf algebra over F2. Then there are operations Sqi on Ext∗,∗

A (F2, F2) satisfying

1. The operation Sqi acts via Sqi : Exts,t
A (F2, F2) → Exts+i,2t

A (F2, F2).
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2. (Cartan formula) Sqi(ab) = ∑m+n=i Sqm(a)Sqn(b).

3. (Adem relations) SqrSqs = ∑
⌊s/2⌋
t=0 Sqr+s−tSqt.

4. The operation Sq0 acts on cocycles by Sq0(γ1|γ2| · · · |γn) = γ2
1|γ2

2| · · · |γ2
n.

5. Sqs(x) = x2 if x ∈ Exts,t
A (F2, F2).

Warning 3.3.13. The reader who is used to Steenrod operations on the cohomology of spaces is
cautioned that here Sq0 is not the identity.

Remark 3.3.14 (On notation). Wilkerson [Wil81] writes S̃qi for the operations of Proposition 3.3.12
to remove ambiguity, as we occasionally will want to write Sqi for an element in A (Example
3.1.10). As this issue does not arise for us, we write Sqi to lighten notational burden.

To compute the cohomology of a not necessarily commutative Hopf algebra is nontrivial. If our
Hopf algebra A sits in an extension B → A → C, we may attempt to understand the cohomology
of A in terms of the cohomologies of B and of C. The following proposition is a special case of the
Cartan-Eilenberg spectral sequence.

Proposition 3.3.15 (Cartan-Eilenberg change-of-rings spectral sequence). Let k be a field, and let
A, B, C be graded Hopf algebras over k. Suppose given a pair of morphisms of cocommutative Hopf algebras
i : B → A, p : A → C exhibiting A as a Hopf algebra extension of C by B.

1. There is a spectral sequence of trigraded algebras with E2-page

Ep,q
2 = Extp

B(k, k)⊗ Extq
C(k, k) =⇒ Extp+q

A (k, k).

The differentials dr : Ep,q
r → Ep+r,q−r+1

r preserve internal degree.

2. The differentials dr are derivations, i.e. they satisfy the Leibniz rule:

dr(xy) = dr(x)y + (−1)p+qxdr(y).

3. (Kudo transgression theorem) The Steenrod operations on Ep,0
r ≃ Extp

B(k, k) interact with the Steen-
rod operations on E0,q

r ≃ Extq
C(k, k) in the following way: If x ∈ E0,q

2 is such that di(x) = 0 for i < r
and dr(x) = y, then dr+i(θx) = θy where θ is a Steenrod operation of homological degree i.

Proof. 1. The additive construction is [CE99, XVI.5, Case 4]. By [Rav03, Theorem A.1.3.16], this
spectral sequence coincides with that of [Ada60, Theorem 2.3.1], where it is shown to be a
spectral sequence of algebras.

2. This follows from the definition of the spectral sequence and [McC01, Theorem 2.14].

3. This is due to [May70, Theorem 3.4].

Remark 3.3.16. The Steenrod algebra can be made to act on the entire spectral sequence and satis-
fies a more general version of the Kudo transgression theorem [Ueh72, Propositions 1 & 4; Sin06,
Theorem 5.2].
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Observation 3.3.17 (Künneth theorem). Given the hypotheses of Proposition 3.3.15 and suppose
that A ≃ B ⊗k C as Hopf algebras. Then the spectral sequence degenerates at E2 and we have a
Künneth theorem for Hopf algebra cohomology.

Using this spectral sequence and Steenrod operations on it, Wilkerson proved the following
general result.

Theorem 3.3.18. [Wil81, Theorem A] If A is a finite-dimensional graded, connected, cocommutative Hopf
algebra over a field k, then H∗(A; k) = π−∗ homA(k, k) is a finitely-generated k-algebra.

Observation 3.3.19. In fact, Wilkerson’s proof shows that homogeneous polynomial generators xi
of H∗(A; k) = Hs,t(A; k) can be taken with bidegree |xi| = (si, ti) with both si, ti strictly positive.

Example 3.3.20. [Wil81, Corollary G(ii)] Let A1 be the sub-Hopf algebra of the mod 2 Steenrod
algebra generated by Sq1 and Sq2. Then H∗(A1; F2) = π∗ homA1(F2, F2) has Krull dimension 2.

3.4 Monoidal structures and duality. While the extra structure on a graded Hopf algebra has
not been used to define its category of modules, the Hopf algebra structure on A endows ModA

and Mod♡
A with extra structure as reflected below.

Construction 3.4.1 (The monoidal structure on ModA). The categories Mod♡
A , ModA admit monoidal

structures given by taking the image of A (considered as a coalgebra) under the functor

E1Alg(Sp)op → Cat∞

R 7→ ModR

(φ : R → S) 7→ (φ∗ : ModS → ModR).

Informally, the underlying graded k-module of M ⊗ N is given by the tensor product M ⊗k N in
graded k-modules, and the A-module structure on M ⊗ N is given by

A ⊗k (M ⊗k N)
∆⊗id−−−→ A ⊗k A ⊗k (M ⊗k N)

id⊗τ⊗id−−−−−→ (A ⊗k M)⊗k (A ⊗k N) → M ⊗k N.

When A is cocommutative, this is moreover a symmetric monoidal structure.

Warning 3.4.2. This symmetric monoidal structure should not be mistaken for the standard monoidal
structure on ModA (for A a commutative algebra) given on objects by (M, N) 7→ M ⊗A N.

Observation 3.4.3. Endowed with the tensor product ⊗k, PerfA is not in general unital. However
the larger categories ModA (Perfk) and ModA are unital with unit given by k(0) with (co)module
structure given by the (co)unit map.

Given a graded augmented k-algebra A, k(n) is always invertible with respect to the aforemen-
tioned symmetric monoidal structure with ⊗-inverse given by k(−n).

Definition 3.4.4 ([Mar83, §12.2]). A finite-dimensional graded k-algebra A is Gorenstein or Poincaré
if there exists an integer n ∈ Z and map of graded k-modules e : A → k(d) such that for each
q ∈ Z, the pairing

Ad−q ⊗ Aq
m−→ Ad

e−→ k

is non-degenerate. A choice of such an e is called an orientation.
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By our assumption that A is finite-dimensional, if d exists it is unique, and we refer to it as the
Gorenstein parameter. Moreover, a choice of orientation for A is unique up to a choice of unit in k.

Observation 3.4.5. Given a graded Hopf algebra A over k, A∨ acquires a canonical left A-module
structure on A∨. Informally, this is given by (a, f : A → k) 7→ f (− · c(a)).

Definition 3.4.6. A graded k-algebra A is Frobenius if there is an isomorphism of graded left A-
modules A ≃ A∨(d) ≃ homgr

k (A, k(d)). A choice of such an isomorphism is an orientation for
A.

Proposition 3.4.8 shows that the notions of orientation of Definitions 3.4.6 and 3.4.4 agree.

Definition 3.4.7. An abelian category A is Frobenius if the following conditions are satisfied:

1. The category A has enough injectives.

2. The category A has enough projectives.

3. The injectives and projectives in A coincide.

Proposition 3.4.8. [Mar83, p. 12.2.5] Given a finite-dimensional connected graded k-algebra A, the fol-
lowing are equivalent:

1. The category of left modules over A LMod♡
A is a Frobenius category

2. The algebra A is a Frobenius algebra

3. The algebra A is a Poincaré algebra.

Proposition 3.4.9. [Mar83, p. 12.2.9] If A is a finite, connected, graded Hopf algebra over a field k, then
A is a Frobenius algebra.

Given a Frobenius algebra A over a ground field k and an A-module M, we may define its Tate
cohomology via complete resolutions [Buc21, p. 5.6.2; CE99, p. 12.2]. We give a different presenta-
tion for the same object in the derived category of k.

Construction 3.4.10. [Rak20, Construction 2.4.4] Let A be a finite-dimensional, graded, cocommu-
tative Hopf algebra over k. Then by Proposition 3.4.9, there is some d > 0 and an equivalence of
A-modules A ∼−→ A∨ ⊗k k(d). Let ε∨ : k(0) → A∨ denote the dual of the counit. Then given any
A-module M, we have a morphism

M ⊗A k(d) 1⊗ε∨−−−→ M ⊗A A∨(d)
≃ M ⊗A A ≃ M.

Since the A-module structure on the left hand side factors canonically through the counit A → k,
the above is adjoint to a map NmM : M ⊗A k(d) → homA(k, M). The Tate construction of M is the
cofiber of the norm map

MtA := cofib(NmM).

We use Tate cohomology of M to refer to the graded homotopy groups of the Tate construction on
M, and simply write “Tate cohomology” when M = k is assumed.
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3.5 Stable module categories. Given a finite-dimensional k-algebra A and a perfect A-module
M, its underlying k-module is perfect. However, an A-module whose underlying k-module is
perfect may not necessarily be perfect over A. An example of this is given by A = k[x]/(x2) and
the module k = A/(x); any projective resolution of k by A is necessarily unbounded. A measure
of the discrepancy between these categories is given by the stable module category of A, which we
construct in this section.

We will see (Corollary 3.5.8) that we could have defined the stable module category of A at the
end of §3.4. However, the presentation of the stable module category in Definition 3.5.2 is crucial
to our identification of an explicit generator (Proposition 3.5.11) and convenient exact sequences
in StModA which will ultimately yield sharper bounds for categorical polynomial entropy. Thus
while the material here is not new, we include it for completeness, and for the unfamiliar reader.

The following construction of the stable module category is borrowed from [Mat15, §2.1], with
minor changes. A more classical perspective can be found in [Buc21].

Construction 3.5.1. Let A be a Frobenius ring (Definition 3.4.6). The category Mod♡
A of all discrete

A-modules admits a combinatorial model structure [Hov99, §2.2] with

1. fibrations given by surjections,

2. cofibrations given by injections, and

3. weak equivalences given by stable equivalences. Given a morphism f : V → W in Mod♡
A , f

is a stable equivalence if there exists g : V → W such that

idV − f ◦ g : V → V and idW − g ◦ f : W → W

each factor through a projective A-module.

Definition 3.5.2. The big stable module category StModbig
A is given by the ∞-categorical localization

LMod♡
A [W

−1] where W ⊂ LModA are the weak equivalences [Lur17, Definition 1.3.4.15]. The
small stable module category StModA is defined to be compact objects in the big stable module cate-
gory.

Notation 3.5.3. If M, N ∈ StModA, we write StExts,t
A (M, N) = π−s,−t homStModA(M, N).

By [Lur17, Prop. 4.1.7.4], StModA inherits a symmetric monoidal structure from ModA. Hovey
shows [Hov99, §2.2] that the homotopy category ho StModbig

A of StModbig
A is the classical stable

module category:
hom

ho StModbig
A
(V, W) = homMod♡

A
(V, W)/ ∼

where two morphisms φ, ψ are identified on the right hand side if their difference factors through
a projective A-module.

Proposition 3.5.4. Let A be a Frobenius ring. Then StModbig
A is presentable.

Proof. Follows from [Lur17, Proposition 1.3.4.22].
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Recollection 3.5.5. [MNN17, §3.2] Let C be a presentable, symmetric monoidal, stable ∞-category,
and let A be an E1-algebra object in C. Let CA−tors denote the smallest stable subcategory of C
containing A ⊗ X and closed under colimits, for X dualizable in C2 [MNN17, Definition 3.1].

We say that an object X ∈ C is A−1-local if, for all Y ∈ CA−tors, we have homC(X, Y) ≃ 0
[MNN17, Definition 3.10]. We denote the full subcategory of A−1-local objects by C[A−1] ⊆ C.
The inclusion of A−1-local objects admits a right adjoint, which we refer to as LA−1 -localization.
An explicit formula computing the LA−1 -localization is described in [MNN17, Construction 3.12].

The following is a mild generalization of [Mat15, Theorem 2.4].

Proposition 3.5.6. Let k be a field, and A a finite-dimensional connected graded cocommutative Hopf
algebra over k. Then there is a symmetric monoidal equivalence of stable ∞-categories

StModbig
A ≃ LA−1 Ind

(
ModA

(
Perfgr

k

))
.

Proof. We have an inclusion of finitely-generated discrete A-modules into the ∞-category of per-
fect graded k-module spectra with an A-module structure:

Mod♡, f g
A ⊂ ModA

(
Perfgr

k

)
.

Taking Ind-completions [Lur09, §5.3] on both sides, we obtain

Φ : Ind
(

Mod♡, f g
A

)
≃ Mod♡

A → Ind
(

ModA

(
Perfgr

k

))
which commutes with filtered colimits. Composing Φ with A−1-localization of Recollection 3.5.5
gives

Mod♡, f g
A∨

Φ−→ Ind (ModA∨)
LA−1−−−→ LA−1 Ind

(
ModA

(
Perfgr

k

))
.

Since this composite takes projective A-modules to zero, it respects weak equivalences and de-
scends to a symmetric monoidal functor

φ : Mod♡
A [W

−1] ≃ StModbig
A → LA−1 Ind

(
ModA

(
Perfgr

k

))
.

We claim that φ commutes with homotopy colimits. This boils down to the fact that Φ takes
short exact sequences of finitely-generated discrete A-modules to cofiber sequences in ModA, and
is defined to be left Kan extended from projective A-modules. Since ModA(Perfk) is generated un-
der colimits by ModA(Perf♡k ), and φ preserves small colimits, we have shown that φ is essentially
surjective.

It remains to check that φ is fully faithful, which we check at the level of homotopy categories.
Since hom(−, M) commutes with colimits by definition, it suffices to check that φ induces

an equivalence on π0 hom(−,−) when the source is a finitely-generated A-module. Note that
StModA is stable and the objects represented by finitely-generated A-modules are compact, so
we can also reduce to the case that the target is finitely-generated. Finally, we use duality and
exactness to reduce to showing that

homho StModA(k, M) → π0 homLA−1 Ind(ModA(Perfgr
k ))(k, φ(M))

2This is also referred to as the localizing subcategory generated by A ⊗ X for X dualizable.
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is an isomorphism for M = k(0) =: k the trivial A-module.
The left-hand side of the above gives the Tate cohomology of A by [Buc21, Lemma 6.1.2].
By Observation 3.4.3 and Proposition 3.4.9, the A-torsion objects and A∨ ≃ A ⊗ k(d)-torsion

objects agree as subcategories in Ind(ModA(Perfgr
k )), hence so do the associated localization func-

tors LA−1 ≃ L(A∨)−1 . By [MNN17, §3.2], the (A∨)−1-localization of k is computed by the cofiber of
a map

colim
∆op

∣∣∣A⊗•+1
∣∣∣→ k. (3.5.7)

We use that homInd(ModA(Perfgr
k ))(1,−) =: homA(1,−) commutes with arbitrary colimits to rewrite

colim
∆op

π0 homA

(
1, A⊗•+1

)
≃ colim

∆op
≤1

π0 homA

(
1, A⊗•+1

)
≃ π0(k ⊗A k)(d)

where d is the Gorenstein parameter of A and we abuse notation by writing π0(k ⊗A k) to refer to
its underlying graded k-module. It suffices to notice that the map (3.5.7) induces the norm map
(3.4.10) upon taking HomA(1,−).

Corollary 3.5.8. Let A be a finite-dimensional connected graded cocommutative Hopf algebra over k. There
is an equivalence of categories StModbig

A ≃ Modgr
ktA .

Proof. Follows from applying Proposition A.2.1 and observing that k(0) is a graded-generator of
StModbig

A . Finally, the proof of Proposition 3.5.6 shows that graded endomorphisms of k(0) in

LA−1 Ind
(

ModA

(
Perfgr

k

))
agree with the Tate construction ktA of Construction 3.4.10.

Construction 3.5.9 (Twist dynamical system on StModA). Let A be a finite-dimensional, graded
connected Hopf algebra over k. The twist functor (1) of Recollection 3.1.1(c) lifts to an autoequiva-
lence twA : Ind

(
ModA

(
Perfgr

k

))
→ Ind

(
ModA

(
Perfgr

k

))
. Because tw preserves the subcategory

ModA

(
Perfgr

k

)
and the property of being a stable equivalence, the twist by 1 functor twA descends

to a well-defined endofunctor twA : StModA → StModA.

The construction of StModA allows for explicit identification of the loop functor [Buc21, §2.2].

Observation 3.5.10 (Loops in StModA). Let A be a k-algebra and let M be a finitely-generated
discrete A-module. Suppose given a surjection f : P ↠ M where P is a projective graded A-
module. Such an f always exists by Propositions 3.4.8 and 3.4.9. The short exact sequence of A-
modules ker( f ) → P → M induces an exact sequence in ModA (Perfk) and in StModA. However,
by definition of the stable module category, P ≃ 0 in StModA. Thus ker( f ) ≃ ΩM.

A compact generator. Here we identify a convenient ‘test object’ in StModA (see introduction to
§2.1).

Proposition 3.5.11. If A is a nontrivial finite-dimensional connected graded Frobenius algebra over a field
k, then StModω

A has a generator (Recollection 2.1.1) given by a finite sum of twists of the ground field.
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Proof. We begin by observing that any discrete finite A-module M can be written as an iterated
extension of k(n) for n ∈ Z. Let w = min{n | Mn ̸= 0}. Since A is connected, the quotient of
graded k-vector spaces M → k(w)⊕dimk Mw is canonically a morphism of A-modules. Then the
exact sequence

fib(p) → M
p−→ k(w)⊕dimk Mw (3.5.12)

induces a cofiber sequence in ModA (Perfk). Replacing M by fib(p) and iterating this procedure
shows that any discrete finite A-module is in the thick subcategory ⟨k(n)⟩n∈Z. . The observation
follows from observing that ModA (Perfk)

ω is generated under shifts and extensions by discrete
A-modules. Since localization preserves compact generators, we conclude that

StModω
A = ⟨k(ℓ)⟩ℓ∈Z .

Now take M = A, fib(p), . . . in the sequence (3.5.12) and apply the previous procedure to produce
a diagram

k(d) = fib(pd) fib(pd−1) · · · fib(p0) A

⊕
k(d − 1)

⊕
k(1) k(0)

pd p1 p0

where each pair of composable morphisms consisting of a horizontal arrow followed by a vertical
arrow is a short exact sequence in Mod♡

A . These induce exact sequences in ModA (Perfk)
ω. Then

by Recollection 2.1.1,

k(d) ∈ ⟨fib(pd−1), k(d − 1)⟩ ⊆ ⟨fib(pd−2), k(d − 2), k(d − 1)⟩ · · · ⊆ ⟨k(0), . . . , k(d − 1)⟩.

Modifying the above argument slightly for A(−1), we see that k(−1) ∈ ⟨k(0), . . . , k(w − 2)⟩, and
similarly for negative twists of k.

Next we show that an assumption for linear-algebraic bound on categorical polynomial en-
tropy (Proposition 2.2.5) holds for our categories of interest.

Proposition 3.5.13. Let A be a finite-dimensional connected graded cocommutative Hopf algebra over a
field k. Then StModA is proper, i.e. all StExtA(−,−) are perfect complexes over k.

Proof. Because twists of k(0) (and shifts thereof) generate StModA, it suffices to show that for each
0 ≤ i, j < w, StExtA(k(i), k(j)) is a bounded complex of finite dimensional k-vector spaces. Equiv-
alently, for a fixed twist t = j − i the graded k-vector space

⊕
s StExts,t

A (k, k) is finite-dimensional.
By Construction 3.4.10, there is an exact sequence

k ⊗A k(d) → homA(k, k) → ktA

of graded k-module spectra. The result follows from considering the resulting long exact sequence
of graded homotopy groups and observing that

▲ For each t ∈ Z,
⊕

s Exts,t
A (k, k) is finite-dimensional: This follows from Theorem 3.3.18 and

Observation 3.3.19.
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▲ For each t ∈ Z,
⊕

s πs(k⊗A k)t is finite-dimensional: Since k is a field, duality interacts nicely
with taking homotopy groups and we can understand the first term as follows:

πs,t(k ⊗A k) ≃ π−s,−t homk(k ⊗A k, k)
=≃ π−s,−t homA(k, k) = Hs(A; k)t

hence the result follows from the previous case.

Remark 3.5.14. The preceding results are where working with graded modules and the assump-
tion that A is connected become essential.

4 Entropy of the twist functor

In this section, we arrive at a proof of the main theorem. We state general results for controlling
complexity in graded stable ∞-categories in §4.1, then apply them to the twist dynamical system
on stable module categories in subsequent sections. We show that the categorical entropy of the
twist functor tw on StModA vanishes. We show that the categorical polynomial entropy of the
twist functor tw is bounded below by one less than the Krull dimension of the cohomology of A
using a linear-algebraic bound of Fan-Fu-Ouchi (Proposition 2.2.5). Since we are not able to show
that StModA is smooth (Definition 2.2.2) for generic A, providing sharp upper bounds for the
categorical polynomial entropy of tw is a more delicate matter. We show that a careful application
of the procedure employed in the proof of Proposition 4.2.3 can lead to upper bounds for the
categorical polynomial entropy of tw.

4.1 Generalities. We start by introducing a general-purpose strategy for computing the com-
plexity of the twist functor on locally graded stable ∞-categories (Definition A.1.4). Informally
a locally graded stable ∞-category C is a stable ∞-category C equipped with an automorphism
(1) : C → C. The reader is invited to take C = StModA or C = ModA (Perfk) and (1) = tw in the
following to fix ideas.

Definition 4.1.1. Let C be a graded stable ∞-category, and let M, N ∈ C. Say that M is a staircase
for N if there is a resolution (Definition 2.1.7)

N(r)[s] −→ M(r − tm)[sm] −→ · · · −→ M(r − t1)[s1] −→ N (4.1.2)

for some integers m, r, ti ∈ Z>0 and si, s ∈ Z such that ti ≤ r. We will refer to m as the height of the
staircase.

We say that an ℓ-tuple (N1, . . . , Nℓ) of objects in C is a pyramid if each Ni is a staircase for Ni+1.
We will refer to ℓ as the dimension of the pyramid.

Let C be a locally graded stable ∞-category, and let X ∈ C be an object. The object X is periodic
if there exist integers a, b, a ̸= 0 such that X(a)[b] ≃ X.

Observation 4.1.3. Let C = ModA

(
Perfgr

k

)
for some connected graded cocommutative Hopf al-

gebra A over k. If A is a staircase for M in ModA

(
Perfgr

k

)
, then M is periodic in StModA.
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Given a staircase for N of height r, we can build a staircase of height kr for arbitrary k ∈ Z>0
by splicing twists of the given staircase. We illustrate the case k = 2.

N(2r)[2s] M(2r − tm)[s + sm] · · · M(2r − t1)[s + s1]

M(r − tm)[sm] · · · M(r − t1)[s1] N

where the top row is −(r)[s] applied to the first m + 1 terms of (4.1.2), the bottom row is the last
m + 1 terms of (4.1.2), and the diagonal arrow is defined to be the composite

M(2r − t1)[s + s1] → N(r)[s] → M(r − tm)[sm].

Proposition 4.1.4. Let C be a locally graded stable ∞-category, and let G ∈ C be a compact generator.
Suppose given a pyramid (N1, . . . , Nℓ) in C such that N1 is periodic, i.e. N1(a)[b] ≃ N1 where a, b are
integers, a ̸= 0. Then there exists a constant C ≫ 0 such that for n ≫ 0,

δ0(G, Nℓ(n)) < C · nℓ−1 n ≫ 0.

Proof. We prove this by induction on the dimension ℓ of our pyramid.
Base case: Let ℓ = 1. By assumption, there is an equivalence N1(a)[b] ≃ N1. Combining this

with Observation 2.1.4, we have

δ0(G, N1(n)) = δ0

(
G, N1

(
n −

⌊n
a

⌋
a
))

≤ max
0≤t<a

δ0(G, N1(t))

which proves the claim.
Inductive step: We assume the statement for ℓ− 1 ≥ 1. We apply Lemma 2.1.13 to our assump-

tion of the existence of a resolution (4.1.2) to

δ0(G, Nℓ(n)) ≤
m

∑
j=1

δ0(G, Nℓ−1(n − tj)) + δ0(G, Nℓ(n − r)) (4.1.5)

≤
m

∑
j=1

⌊n/tj⌋

∑
kj=1

δ0(G, Nℓ−1(n − k jtj)) + max
0≤i<r

δ0(G, Nℓ(i)) (4.1.6)

The inductive assumption implies that δ0(G, Nℓ−1(n)) ≤ C · nℓ−2 for n ≫ 0. It follows from
Lemma 4.1.7 that there exists a constant C′ ≫ 0 such that the first sum of (4.1.6) is < C′ · nℓ−1 for
n ≫ 0 as desired.

Lemma 4.1.7. Let P(x) be a degree ℓ polynomial with nonnegative real-valued coefficients, and fix a posi-
tive integer d ∈ Z>0. Then for any n ∈ Z>0, we have an inequality

P(n) + P(n − d) + P(n − 2d) + · · ·+ P
(

n − d
⌊n

d

⌋)
< C · nℓ+1 for n ≫ 0. (4.1.8)

Proof. Observe that the statement for P(x) = xe, 0 ≤ e ≤ ℓ implies the statement for general P,
so we may assume without loss of generality that P(x) = xℓ is a monomial. Write SP(n, d) for the
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sum in (4.1.8). By our assumption on P we have SP(n, d) ≤ SP(n, 1), so it suffices to prove the case
d = 1. This is a consequence of Faulhaber’s formula [Fau31]:

n

∑
k=1

kd =
nd+1

d + 1
+ O(nd).

We can give an explicit condition for when a staircase in a pyramid does not contribute to the
categorical polynomial entropy.

Observation 4.1.9. Let C be a stable ∞-category, and let M, N ∈ C. Suppose N is in the thick
subcategory generated by M. Then δ0(M, N) < ∞.

Observation 4.1.9 leads to the following refinement of Proposition 4.1.4.

Proposition 4.1.10. Let C be a locally graded stable ∞-category, and let G ∈ C be a generator. Suppose
given a pyramid (N1, . . . , Nℓ) in C such that N1 is periodic, i.e. N1(a)[b] ≃ N1 where a, b are integers,
a ̸= 0. Assume that there exist integers bi, 1 ≤ b1 < · · · bh < ℓ, such that Nbi+1 is in the thick subcategory
generated by

⊕
t∈T Nbi

(t). Then there exists a constant C ≫ 0 such that for n ≫ 0,

δ0(G, Nℓ(n)) < C · nℓ−1−h n ≫ 0.

Proof. The result follows from a modification of the inductive step of Proposition 4.1.4 when ℓ =
bi + 1. We demonstrate the case ℓ = b1 + 1; the cases ℓ = bi + 1 are proved similarly. By our
assumption, Observation 4.1.9, and (1) and (2) of Lemma 2.1.5,

δ(G, Nℓ(n)) ≤ δ(G,
⊕
t∈T

Nb1(n + t)) · δ(
⊕
t∈T

Nb1(n + t), Nb1+1) ≤ C′ ∑
t∈T

δ(G, Nb1(n + t)) (4.1.11)

The inductive assumption implies that δ(G, Nb1(n)) ≤ C · nb1−1 for n ≫ 0. Since the sum on the
right hand side of (4.1.11) is finite and independent of n, there exists a constant C′′ ≫ 0 such that
δ(G, Nb1+1(n)) < C′′ · nb1−1 for n ≫ 0 as desired.

We identify special case in which the assumption of Proposition 4.1.10 holds.

Proposition 4.1.12. Let C a locally graded stable ∞-category. Let M be a staircase for N (Definition 4.1.2).
Suppose that the map classifying the resolution (4.1.2) is nilpotent. Then M is in the thick subcategory
generated by

⊕
j∈S N(j) for some finite subset S ⊂ Z.

Remark 4.1.13. This proposition is similar in spirit to the ideas contained in [MNN17, §4] (in
particular Proposition 4.7 of loc. cit.), though our result does not require M to be an algebra object
(see Observation 4.3.3).

Proof of Proposition 4.1.12. The resolution

N(r)[s] M(r − tm)[sm] · · · M(r − t1)[s1] N
gm gm−1 g1 g0 (4.1.14)

is classified by a map φ : N → N(r)[s + m] which is defined to be the composite

N Σfib(g0) ≃ Σcofib(g1) ΣZ1 · · · ΣmN(r)[s].
f0 f1 fm
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Suppose φe is nullhomotopic for some e ∈ Z>0. For 0 < b ≤ e and 0 < c < m, we contemplate
the following commutative diagram in C in which all rows and columns are cofiber sequences

N N 0

Zc(br − Tc+1)[b(s + m) + c] Zc+1(br − Tc)[b(s + m) + c + 1] cofib( fc+1)(br − Tc)[b(s + m) + c + 1]

cofib( fc · · · f0 ◦ φb) cofib( fc+1 · · · f0 ◦ φb) cofib( fc+1)(br − Tc)[b(s + m)]

fc ··· f0◦φb fc+1··· f0◦φb

fc+1

(4.1.15)
where we write Tc = ∑m

i=c ti.
We observe that

▲ For each 0 < c < m, cofib( fc) is a twist of M by definition of f .

▲ The bottom row in the diagram (4.1.15) gives

cofib( fc+1 · · · fm ◦ φb) ∈
〈

cofib( fc · · · fm ◦ φb), cofib( fc)(br)
〉

.

▲ For each 0 < b ≤ e, we have cofib(φb) ∈
〈

cofib( fm)(B), cofib( fm−1 · · · f0 φb−1)
〉

for some
B ≫ 0.

▲ Taking b = e, we have N[1]⊕ N[e(s + m)] ≃ cofib(φe).

The result follows from a ‘spiral’ descending induction.

Remark 4.1.16. The crucial difference between the proof of Proposition 4.1.10 and the proof of
Proposition 4.1.4 is: The length of the sum in the inequality (4.1.6) is approximately linear in n,
but in (4.1.11), the length of the sum does not depend on n. Consequently, the asymptotic growth
rate of δ(G, M(n)) is controlled by the asymptotic growth rate of δ(G, N(n)) times a constant factor
instead of a factor linear in n.

4.2 Categorical entropy of tw. In this section, we apply the general purpose tools of §4.1 to show
that hcat(tw) vanishes. First, we introduce a notion which will allow us to construct pyramids in
StModA.

Definition 4.2.1. Let A be a graded Hopf algebra over a field k. A tower under A is a commutative
diagram (4.2.2) of Hopf algebras

M0 A = A0

M1 A1

Mℓ Aℓ

Aℓ+1

...
(4.2.2)

satisfying the conditions
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1. All composites consisting of a right arrow followed by a down arrow are extensions of Hopf
algebras (Definition 3.2.1). We refer to each such pair of composites as a storey, and say that
the pyramid (4.2.2) has ℓ+ 1 storeys.

2. All Mi are monogenic.

3. The final term Aℓ+1 = k is the trivial Hopf algebra.

Theorem 4.2.3. Let A be a nontrivial connected, graded, cocommutative Hopf algebra which is finite-
dimensional over a field k. Let tw : StModA → StModA denote the twist functor of Construction 3.5.9.
Then hcat(tw) = 0.

Proof. By Proposition 3.5.11, we can take our generator of StModA to be G = ⊕d−1
i=0 k(i) where d is

the Gorenstein parameter of A. Notice that

hcat(tw) = lim
n→∞

log δ0(G, G(n))
n

≤ lim
n→∞

log ∑d−1
j=0 δ0(G, k(n + j))

n
by subadditivity (Lemma 2.1.5)

Thus by Proposition 4.1.4, it suffices to exhibit a pyramid (A1, . . . , Aℓ+1) in StModA such that
Aℓ+1 = k(0). This follows from Lemma 4.2.4.

Lemma 4.2.4. Let A be a connected, graded, cocommutative Hopf algebra which is finite-dimensional over
a field k. Suppose given a tower under A (Definition 4.2.1) with ℓ+ 1 storeys. Then there is a pyramid in
StModA of dimension ℓ+ 1.

Proof. By Propositions 3.2.8 and 3.2.9 (corresponding to the cases char k = 0 and char k > 0,
resp.), there exists a tower (Definition 4.2.1) under A. Moreover, all Mi are monogenic elementary
of minimal height, i.e. of the form in Examples 3.2.6. Then by Lemma 4.2.6, for each 0 ≤ i ≤ ℓ we
have a resolution

k(mi) Mi(ni) Mi(0) k(0)

in ModMi (Perfk) for ni > 0. Pushing forward to ModAi (Perfk), this induces a resolution in
ModAi (Perfk)

k(mi)⊗Mi Ai Mi(ni)⊗Mi Ai Mi ⊗Mi Ai k ⊗Mi Ai

Ai+1(mi) Ai(ni) Ai Ai+1

(4.2.5)

where we have used the identification of Remark 3.2.2. Since the forgetful functors are exact, we
regard (4.2.5) as a resolution in ModA (Perfk). Thus (A1, . . . , Aℓ+1) forms a pyramid in StModA
such that Aℓ+1 = k(0) and A1 is periodic.

Lemma 4.2.6. Let M be a finite graded monogenic Hopf algebra over a field k of arbitrary characteristic.
Then there is a resolution of the following form in ModM (Perfk)

k(m) M(n) M(0) k(0) (4.2.7)

for some positive integers m > n > 0.
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Proof. When a morphism ψ : P → Q of M-modules in Mod♡
M is surjective (resp. injective), then

we have equivalences

fib(ψ) ≃ ker(ψ)
(cofib(ψ) ≃ coker(ψ)) ,

where the fiber (resp. cofiber) are computed in the derived category ModM and the kernel (resp.
cokernel) are computed in the abelian 1-category Mod♡

M. Write x ∈ M for a generator of M and let
n = |x| and h = the height of x. The result follows from noting that the kernel (resp. cokernel) of
multiplication ·x : M(n) → M by x is k(nh) (resp. k(0)).

4.3 Polynomial entropy of tw. We will need slightly different techniques to establish upper and
lower bounds on hpol(tw).

Proposition 4.3.1. Let A be a connected, graded, cocommutative Hopf algebra which is finite-dimensional
over a field k. Let a pyramid (N1, . . . , Nℓ) in StModA such that N1 is periodic and Nℓ = k(0) be given.
Then

hpol(tw) ≤ ℓ− 1.

Proof. We compute

hpol(tw) = lim sup
n→∞

log δ0(G, G(n))
log n

≤ lim sup
n→∞

log ∑d
j=0 δ0(G, k(n + j))

log n
by subadditivity (Lemma 2.1.5)

≤ lim sup
n→∞

log Cnℓ−1

log n
by Proposition 4.1.4

= ℓ− 1.

Corollary 4.3.2. Let A be a connected, graded, cocommutative Hopf algebra which is finite-dimensional
over a field k. Suppose given a tower under A (Definition 4.2.1) with ℓ+ 1 storeys. Then the categorical
polynomial entropy of tw : StModA → StModA satisfies

hpol(tw) ≤ ℓ.

Observation 4.3.3. The existence of a tower such as in diagram (4.2.2) gives us a bound for the
categorical polynomial entropy and allows us to show that the categorical entropy vanishes iden-
tically. However, notice that the proofs of Proposition 4.3.1 and Theorem 4.2.3 do not require each
‘stage’ of the tower to be a central extension, or that they be extensions of Hopf algebras. In fact, it
suffices to find A-modules Mi satisfying relations such as those in diagram (4.2.5). Thus we should
not expect a bound obtained in this way to be optimal.

Our proof of the lower bound is similar in spirit to that of [FFO21, Proposition 6.4].

Proposition 4.3.4. Let A be a nontrivial connected, graded, (co)commutative Hopf algebra which is finite-
dimensional over a field k. Let tw : StModA → StModA denote the twist functor. Then the categorical
polynomial entropy of the twist functor admits the lower bound

hpol(tw) ≥ dim H∗(A; k)− 1.
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Proof. By Proposition 2.2.5, 3.5.13 and Theorem 4.2.3, we have an inequality

hpol(tw) ≥ lim sup
n→∞

1
log N

(
log ∑

ℓ

dimk ExtℓStModA
(G, G(n))

)
(4.3.5)

for G some generator of StModA. Let G =
⊕d

i=0 k(i) be the generator of Proposition 3.5.11. Then
each term in (4.3.5) splits as

StExtℓ(G, G(n)) = StExtℓ,−n(G, G) =
d⊕

i,j=0

StExtℓ,i−j−n
A (k, k).

The limit on the right hand side of (4.3.5) is bounded from below by

lim sup
n→∞

log C(n)
log n

where C(n) := ∑
ℓ

dimk StExtℓ,−n(k, k).

The proof of Proposition 3.5.13 in particular implies that StExts,t
A = Exts,t

A for s < 0 and t < 0.
By Theorem 3.3.18, H∗(A; k) is a finitely-generated graded k-algebra. Write d for the Krull di-

mension of H∗(A; k). By graded Noether normalization [BH93, Theorem 1.5.17] and Observation
3.3.19, H∗(A; k) is a finite module over k[x1, . . . , xd] where the xi are homogeneous elements of
bidegree |xi| = (ℓi, mi) where ℓi, mi ∈ Z>0. Write Pn(t) (resp. Qn(t)) for the Poincaré series of
H∗(A; k)n and (resp. k[x1, . . . , xd]n). We observe that that C(n) = Pn(0). We compute

hpol(tw) ≥ lim sup
n

log Pn(0)
log n

= lim sup
n

(log f (0) + log Qn(0))
log n

by Lemma 4.3.6.

Then Qn(0) is the number of partitions of n into parts belonging to {ℓ1, . . . , ℓd}. By Lemma 4.3.7,
we have lim supn

1
log n (log Qn(0)) ≥ d − 1.

Lemma 4.3.6. Let R = k[x1, . . . , xm] be a bigraded polynomial ring on homogeneous generators, and let M
be a finite bigraded module over R. Write P(t) := ∑i,j∈Z dimk Ri,jti and Pj(t) := ∑i∈Z dimk Ri,jti. Write
Q(t), Qj(t) for the analogous power series corresponding to M. Then there exists a polynomial f ∈ Z[t]
such that Q(t) = f · P(t) and Qj(t) = f · Pj(t).

Proof. Induct on m as in the proof of [Qui71, Lemma 2.6].

Lemma 4.3.7. [Nat00, Thm 15.2] Let W be a nonempty set of positive integers such that gcd(W) = 1 and
W has cardinality k. Then if pW(n) is the number of partitions of n into parts belonging to W, then

pW(n) =

(
∏

a∈W
a

)−1
nk−1

(k − 1)!
+ O(nk−2).

Warning 4.3.8. The reader might be tempted to relate π∗,∗ktA-modules to coherent sheaves on
weighted projective space of dimension one less than the Krull dimension of π∗,∗ktA by analogy
with Proposition 1.3.3, appeal to [CK08, Prop. 3.2] which shows that the bounded derived category
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of said weighted projective space is smooth in the sense of Definition 2.2.2, and deduce equality in
Proposition 4.3.4. However, in general the functor which takes homotopy groups

π∗,∗ : ModC∗(A;k) ≃ ModA → ModH∗(A;k)

is not an equivalence of categories: To assert that this functor is an equivalence categories is a ver-
sion of Freyd’s generating hypothesis, which is known not to hold without restrictive conditions
on A (cf. [Bea+21, Remark 2.22; Ben+07, Theorem 1.1; Loc07, Theorem A]).

Collectively, the results of this section give both an upper bound and a lower bound for hpol(tw).

Theorem 4.3.9. Let A be a nontrivial connected, graded, (co)commutative Hopf algebra which is finite-
dimensional over a field k. Let tw : StModA → StModA denote the twist functor. Then the categorical
polynomial entropy of the twist functor admits the lower bound

hpol(tw) ≥ dim H∗(A; k)− 1.

Suppose given a tower under A (Definition 4.2.1) with ℓ + 1 storeys. Then the categorical polynomial
entropy of tw : StModA → StModA satisfies

hpol(tw) ≤ ℓ.

4.4 Refining the upper bound. We give an explicit conditions for when a storey of the tower
(4.2.2) does not contribute to the categorical polynomial entropy.

Proposition 4.4.1. Let A be a nontrivial connected, graded, cocommutative Hopf algebra which is finite-
dimensional over a field k. Let a tower under A with ℓ+ 1 storeys as in diagram (4.2.2) be given. Assume
that there exist integers bi, 1 ≤ b1 < · · · bh < ℓ, such that Abi+1 is in the thick subcategory generated by⊕

t∈T Abi
(t).

hpol(tw) ≤ ℓ− h.

Proof. Follows from Proposition 4.1.10 and the construction of a pyramid in Lemma 4.2.4.

More generally, we have the

Proposition 4.4.2. Let A be a nontrivial connected, graded, cocommutative Hopf algebra which is finite-
dimensional over a field k. Suppose given a pyramid (N1, . . . , Nℓ) in StModA such that N1 is periodic, i.e.
N1(a)[b] ≃ N1 where a, b are integers, a ̸= 0. Assume that there exist integers bi, 1 ≤ b1 < · · · bh < ℓ,
such that Nbi+1 is in the thick subcategory generated by

⊕
t∈T Nbi

(t). Then for n ≫ 0,

hpol(tw) ≤ ℓ− 1 − h.

Proof. This follows from a special case of Proposition 4.1.10.

The next proposition provides a criterion under which the assumption of Proposition 4.4.1
holds. While we do not verify the assumptions of Propositions 4.4.3 for the examples in §5, we find
this an instructive result concerning the relationship between non-nilpotent self-maps of nonzero
internal degree (corresponding to polynomial generators of ExtA(N, N)) and optimality of induc-
tive bounds obtained in Propositions 4.1.4 and 4.3.1.
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Proposition 4.4.3. Let A be a connected, graded, cocommutative Hopf algebra which is finite-dimensional
over a field k. Let a tower under A (Definition 4.2.1) be given. Suppose that the image of the map (4.2.7)

ExtMi (k, k) → ExtAi (Ai−1, Ai−1)

(k → Σ2k) 7→ (Ai−1 → Σ2 Ai−1)

classifying the resolution (4.2.5) is nilpotent. Then Ai is in the thick subcategory generated by
⊕

j∈S Ai−1(j)
for some finite subset S ⊂ Z.

Proof. Follows from Proposition 4.1.12.

5 Examples & Computations

5.1 Commutative Hopf algebras. The simplest cases occur when our Hopf algebra is bicommu-
tative. The next example is an alternative perspective on Proposition 1.3.1.

Example 5.1.1 (Exterior Hopf algebras). Let A =
∧

k[e1, . . . , ed] be the exterior Hopf algebra where
each ei is primitive. We can write down a tower (4.2.2) for A with Mi =

∧
k[ei+1] and Ai =∧

k[ei+1, . . . , ed] terminating at Ad. Then Proposition 4.3.1 implies that the shift functor on the
stable module category of A has categorical polynomial entropy hpol(tw) ≤ d − 1. On the other
hand, the cohomology ring of A is π∗,∗ExtA(k, k) = k[xi] where |xi| = (1, |ei| + 1) by Example
3.3.11. Thus by Proposition 4.3.4, hpol(tw) ≥ dim H∗(A; k) − 1 = d − 1. Taken together, these
imply

hpol(tw) = d − 1.

Notice that the tower of Example 5.1.1 arises from a tensor product decomposition of A. The
following theorem (due to Hopf [Hop41] in characteristic zero and Borel [Bor53, Théorème 6.1] in
positive characteristic) allows us to generalize the Example 5.1.1 to arbitary finite graded primitively-
generated bicommutative Hopf algebras over a field.

Theorem 5.1.2. Let A be a bicommutative graded finite-type Hopf algebra over a perfect field k. Then there
exist Hopf algebras Mi where each Mi are monogenic such that A =

⊗n
i=1 Mi as Hopf algebras.

Corollary 5.1.3. Let A be a bicommutative connected graded finite Hopf algebra over a perfect field k of
arbitrary characteristic. Let A =

⊗n
i=1 Mi be a decomposition of A into monogenic Hopf algebras Mi.

Then the categorical polynomial entropy of the twist functor tw : StModA → StModA is given by

hpol(tw) = n − 1.

Proof. Since A is finite, each Mi is finite, so we can take generators xi ∈ Mi of finite height hi > 0
and positive graded degree |xi| > 0. Then

· · · → Mi(h|xi|)
·xh−1

i−−−→ Mi(|xi|)
·xi−→ Mi −→ k

is a minimal resolution of k by projective Mi-modules. It follows that H∗(Mi; k) ≃ k[y]⊗k
∧

k(z)
where |y| = (2, h|xi|) and |z| = (1, |xi|) by Proposition 3.3.10. Then by Observation 3.3.17,
Krull dim H∗(A; k) = n. The inequality hpol(tw) ≥ n − 1 follows Proposition 4.3.4. The inequality
hpol(tw) ≤ n − 1 follows from combining Lemma 4.2.6 and Proposition 4.3.1 applied to a tower
(4.2.2) for A constructed analogously to that of Example 5.1.1.
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5.2 Noncommutative Hopf algebras. Typical Hopf algebras in homotopy theory arising as alge-
bras of cohomology operations (see Introduction to §3) are cocommutative but not bicommutative.
We consider two examples of non-commutative Hopf algebras in this section. A central theme of
this section is the importance of choosing an appropriate pyramid (Definition 4.1.1). In the follow-
ing examples, we show that an obvious choice for a pyramid does not lead to an optimal bound
for hpol(tw).

We begin with a small example of a cocommutative but noncommutative Hopf algebra native
to stable homotopy theory.

Example 5.2.1. Consider the finite subalgebra A1 of the mod 2 Steenrod algebra of Example
3.1.10. An arguably natural choice of pyramid for StModA1 can be had by applying the strat-
egy of Proposition 4.3.1 to the extension in Example 3.2.4. We obtain a tower with M0 =

∧
F2
[Q1],

M1 =
∧

F2
[Sq1], M2 =

∧
F2
[Sq2]. Lemma 4.2.4 furnishes a pyramid in StModA1 of dimension

3. Then Proposition 4.3.1 implies that the categorical polynomial entropy of the twist functor
tw : StModA1 → StModA1 is bounded from above by hpol(tw) ≤ 2.

However, Proposition 4.3.4 and Example 3.3.20 imply that hpol(tw) ≥ 1. This discrepancy be-
tween the lower and upper bounds for hpol(tw) can be resolved by identifying an explicit pyramid
in StModA1 .

Proposition 5.2.2. Let A1 be the finite subalgebra of the mod 2 Steenrod algebra of Example 3.1.10. Then
the categorical polynomial entropy of the twist functor tw : StModA1 → StModA1 is bounded from above
by hpol(tw) ≤ 1.

Proof. Follows from Proposition 4.3.1 and observing that Lemma 5.2.3 furnishes a pyramid of di-
mension 2.

The preceding example is topological in nature: To see this let BO be the classifying space of
the infinite orthogonal group over R. This space represents the cohomology theory which assigns
to a compact space X the group completion of the topological monoid of R vector bundles on X.
Then a result of Stong [Sto63] shows that the cohomology of BO is isomorphic to the quotient Hopf
algebra H∗(BO; F2) ≃ A⊗A1 F2 as modules over the mod 2 Steenrod algebra.

Lemma 5.2.3. Let A1 be the sub-Hopf algebra of the mod 2 Steenrod algebra generated by Sq1 and Sq2.
Let B0 be the left ideal of A1 generated by Sq1. Write p : B0 → F2 for the projection map which mods out
by Sq2. Let B1 be the quotient A1/(Sq1, Sq1Sq2). Then the following hold in StModA1 :

▲ There is an exact sequence

F2(12) B0(6) B0(−1)[−2] F2[−2]
p

▲ The module B0 is periodic: B0(−1)[1] ≃ B.

Proof. We construct the first exact sequence; the existence of the second exact sequence is straight-
forward.

As a submodule of A1, B0 is generated as a F2-vector space by the elements

Sq1, Sq2Sq1, Sq1Sq2Sq1, Sq2Sq1Sq2Sq1.
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The map p0 := p : B0(−1) → k(0) is given by projection onto Sq1. Consider the A1-linear mor-
phism p1 : A1(2) → ker(p0) which sends 1 7→ Sq2Sq1. By explicit calculation using the Adem
relations, we see that

▲ p1 surjects onto the kernel of p0

▲ The kernel of p1 is the left ideal of A1 generated by Sq2. Explicitly, ker(p1) is generated as a

k-vector space by Sq2, Sq1Sq2,
(

Sq2
)2

, Sq2Sq1Sq2,
(

Sq2
)3

=
(

Sq2Sq1
)2

=
(

Sq1Sq2
)2

.

By Observation 3.5.10, ker(p1) ≃ Ω ker(p0) in StModA.
Now consider the A1-linear morphism p2 : A1(4) → ker(p1) which sends 1 7→ Sq2. By explicit

calculation using the Adem relations (3.1.11), we see that

▲ p2 surjects onto the kernel of p1

▲ The kernel of p2 is the left ideal of A1 generated by Sq1Sq2. Explicitly, ker(p2) is generated

as a k-vector space by Sq1Sq2, Sq2Sq1Sq2,
(

Sq2
)3

=
(

Sq2Sq1
)2

=
(

Sq1Sq2
)2

.

By Observation 3.5.10, ker(p2) ≃ Ω ker(p1).
Finally, there is a surjective A1-linear map p3 : B0(6) → ker(p2) which takes Sq1 7→ Sq1Sq2.

The result follows from observing ker(p3) ≃ F2(12) and splicing two exact sequences together.

Example 5.2.4. Define M to be the dual of the commutative coassociative 8-dimensional Hopf
algebra M∨ =

∧
F2
(e1, e2, e3) where ei lives in grading degree −i. Define the comultiplication such

that e1 and e2 are primitive and

∆(e3) = 1 ⊗ e3 + e1 ⊗ e2 + e3 ⊗ 1.

Passing to the dual, this says that M is cocommutative and, as an associative algebra, is generated
by elements x1, x2, x3 where xi lives in grading degree i. The xi satisfy the relations

▲ x2
i = 0 for i = 1, 2, 3.

▲ The element x3 commutes with both x1 and x2.

▲ There is a nontrivial commutation relation x1x2 = x2x1 + x3.

Observe that taking M0 =
∧

F2
(e3) and Mi =

∧
F2
(ei) for i = 1, 2 produces a tower (4.2.2) for M,

giving the naı̈ve bounds

hcat(tw) = 0
hpol(tw) ≤ 2.

On the other hand, Propositions 4.3.4 and 5.2.9 imply that hpol(tw) ≥ 1. We resolve this discrep-
ancy by exhibiting a pyramid in StModM as follows. Let X, Y be the left ideals generated by x1, x2
respectively. Consider the exact sequences

X(1) M X (5.2.5)

Y(2) M Y (5.2.6)

k(6) M X(−1)⊕ Y(−2) k(0)
·x1⊕·x2 (5.2.7)
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in ModM. In particular, the non-commutativity of M is what makes the third sequence above exact
in grading degree 3: the center morphism in this degree is given by

M3 → X4 ⊕ Y5

x3 7→ (x3x1, x3x2)

x1x2 7→ (x1x2 · x1, x1x2 · x2) = (x1x3, 0).

We observe that the sequences (5.2.5) and (5.2.6) imply that X(−1)⊕ Y(−2) is periodic, while the
sequence (5.2.7) passes to an exact sequence

k(6)[−1] X(−1)⊕ Y(−2) k(0)

in StModM. Therefore, (X(−1)⊕ Y(−2), k(0)) is a pyramid for M.
An application of the arguments of Theorem 4.2.3 and Proposition 4.3.1 imply that the twist

functor tw : StModM → StModM satisfies hpol(tw ≤ 1. Taken together, we have shown that

hpol(tw) = 1.

Remark 5.2.8. One should contrast the preceding example with the special case of Example 5.1.1
where d = 3 and ei = i.

Proposition 5.2.9. Let M be the connected graded cocommutative Hopf algebra over F2 of Example 5.2.4.
Then the cohomology of M has Krull dimension

dim H∗(M; F2) = 2.

Proof. Consider the central extension of Hopf algebras∧
F2
[e3] M

∧
F2
[e1, e2].

By Proposition 3.3.15, there is a spectral sequence of trigraded algebras with E2-page

Ep,q
2 = Ext

p ,∗∧
F2

[e1,e2]
(F2, F2)⊗ Extq,∗∧

F2
[e3]

(F2, F2) ≃ F2[α1, α2, α3]

|α1| = (1, 0, 1) |α2| = (1, 0, 2) |α3| = (0, 1, 3)

converging to Exts,t
M(F2, F2). Since d2(e3) = e1 ⊗ e2 in the cobar complex of M (Construction 3.3.6),

α3 cannot survive the spectral sequence. By degree considerations,

d2 : α3 7→ e1|e2 = α1 · α2.

Since the differential is a derivation (Proposition 3.3.15(1)), we have

E3 = F2[α1, α2]/(α1α2)⊗F2 F2[(α3)
2]

By the Kudo transgression theorem (Proposition 3.3.15(3)) and Cartan formula for Steenrod oper-
ations (Proposition 3.3.12), we have

d3 : α2
3 = Sq1α3 7→ Sq1(α1α2) = Sq0(α1)Sq1(α2) + Sq1(α1)Sq0(α2)

where the right-hand side vanishes because Sq0(αi) = e2
i = 0 for i = 1, 2. Then the Kudo trans-

gression theorem implies that the rest of the differentials vanish, so the spectral sequence collapses
and E3 = E∞. The resulting ring has Krull dimension 2.
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A Graded Schwede-Shipley

The goal of this section is to prove a graded enhancement of [SS03, Theorem 3.1.1]. Recall our no-
tation Zδ for the discrete category (no nonidentity morphisms) with objects given by the integers.

A.1 Generalities on presentable ∞-categories. Write PrL for the ∞-category of presentable ∞-
categories with colimit-preserving functors. We refer readers to [Lur09, Definition 5.5.0.1] for the
precise definition of a presentable ∞-category; the main point is that a presentable category C,
while necessarily being large, is generated under colimits by a small collection of objects.

Recollection A.1.1 (Lurie tensor product). The category PrL admits a symmetric monoidal struc-
ture [Lur17, Proposition 4.8.1.15]. Given C,D ∈ PrL, their tensor product C ⊗ D is initial among
presentable ∞-categories receiving a functor from C ×D which preserves small colimits separately
in each variable.

Definition A.1.2. [Lur14, §2.2] Let Spgr := Fun(Zδ, Sp) be the category of graded spectra.
Let Spcgr

∗ := Fun(Zδ, Spc∗) be the category of graded pointed spaces.

Observation A.1.3. By [Lur09, Proposition 5.5.3.6], Spgr and Spcgr are presentable. The categories
Spgr and Spcgr are E1-algebra objects in PrL via Day convolution [Lur17, Example 2.2.6.17]. More-
over, the levelwise suspension spectrum functor Σ∞

+ : Spcgr → Spgr exhibits Spgr as an algebra
over Spcgr.

The following definition is a “large” analogue of [Lur14, Notation 2.4.10].

Definition A.1.4. Using Observation A.1.3, we define the categories of locally graded presentable
∞-categories and of locally graded presentable stable ∞-categories:

PrL,gr := ModSpcgr(PrL)

PrL,st,gr := ModSpgr(PrL,st).

In particular, we will refer to a morphism F : C → D in PrL,gr as a graded functor.

Given a graded presentable ∞-category C, restricting the structure morphism Spgr ⊗ C → C
to the full subcategory (n) : Sp ↪→ Spgr on spectra concentrated in degree n furnishes a functor
(n) : C → C. In particular, (n) is an autoequivalence of C (cf. [Lur14, Definition 2.4.2]).

Example A.1.5. Let C be any presentable ∞-category. Then Cgr := FunCat∞(Z
δ, C) is a graded

presentable ∞-category. If C is furthermore stable, then Cgr is a graded presentable stable ∞-
category.

Example A.1.6. Let R ∈ E1Alg(Spgr). Then the category of R-modules in graded spectra ModR(Spgr)
is a graded presentable ∞-category.

The goal of this section is to show that a class of sufficiently nice graded categories are of the
form of Example A.1.6.

Observation A.1.7. The category PrL,gr inherits a symmetric monoidal structure from PrL by
[Lur17, Theorem 4.5.2.1]. The tensor product of two graded presentable stable ∞-categories C,D
can be identified with their relative tensor product over Spcgr.
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For an ∞-category C, being stable is a property, not additional structure. Reinterpreting stabil-
ity as admitting a module structure over the ∞-category of spectra, this is captured by the follow-
ing definition from [Lur17, §4.8.2].

Definition A.1.8. Let C be a symmetric monoidal ∞-category, and let 1 denote the ⊗-unit of C. A
morphism e : 1 → E is an idempotent object of C if the composites

idE ⊗ e : E → E ⊗ E e ⊗ idE : E → E ⊗ E

are equivalences in C.
A pair (D, X) where D is a presentable ∞-category and X ∈ D is idempotent if there exists a

colimit-preserving functor F : Spc → D with F(∗) = X exhibiting D as idempotent in PrL [Lur17,
discussion before Proposition 4.8.2.11].

The following is a mild generalization of [Lur17, Proposition 4.8.2.18]. Write S0 ∈ Sp for the
sphere spectrum.

Proposition A.1.9. The pair (Spgr, S0(0)) is idempotent in PrL,gr.

Corollary A.1.10. The forgetful functor PrL,stgr → PrL,gr exhibits the former as a full subcategory of the
latter.

Proof. This follows from [Lur17, Proposition 4.8.2.4(3)] and the definition of a localization functor
[Lur09, Definition 5.2.7.2].

Proof of Proposition A.1.9. This follows from taking C = PrL and A = Spcgr and E = Sp in Lemma
A.1.11. By [Lur17, Proposition 4.8.1.7],

Spcgr ⊗ Sp ≃ RFun(Spcgr,op, C) ≃ Spgr

where the second equivalence follows from noting that Spcgr = Fun(Zδ, C) as a presheaf category
is freely generated by Zδ under homotopy colimits [Lur09, Theorem 5.1.5.6].

Lemma A.1.11. Let C be a symmetric monoidal ∞-category, and let A be an E∞-algebra object in C. Let
E ∈ C, and suppose e : 1 → E exhibits E as an idempotent object in C. Then

e ⊗ idA : A → E ⊗ A

exhibits E ⊗ A as an idempotent object in ModA(C).

Proof. By the characterization of idempotence given by Remark 4.8.2.6 of [Lur17], it suffices to
show that the map

(e ⊗ idA)⊗A idE⊗A : E ⊗ A → (E ⊗ A)⊗A (E ⊗ A)

is an equivalence. Rearranging, we find the previous is equivalent to idA : A = A tensored with
e ⊗ idE : E → E ⊗ E, which is an equivalence by our assumption.
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A.2 The main theorem. The following is a mild generalization of [Lur17, Theorem 7.1.2.1].

Proposition A.2.1. Let C be a graded stable ∞-category. Then C is equivalent to LModgr
R for some graded

E1-ring R if and only if C is presentable and there exists a compact object G ∈ C which graded-generates C
in the following sense: If M ∈ C is an object having the property that Extn

C(G, M) ≃ 0 for all n as a graded
spectrum (Recollection 3.1.1(f)), then M ≃ 0.

Proof. We begin with a preliminary observation: There is a commutative diagram [Lur17, Con-
struction 4.8.3.4]

CatAlg
∞ (κ) CatMod

∞ (κ)M/−

Monκ
E1
(Cat∞)

Θ

U
.

We will regard Spgr ∈ Monκ
E1
(Cat∞). By definition the fiber over Spgr of U is equivalent to

AlgE1
(Spgr). Then it follows from Theorem 4.8.5.5 that Θ restricts to an equivalence

AlgE1
(Spgr) → CatMod

∞ (κ)Spgr/−.

Suppose C is locally graded presentable. Then by Proposition A.1.9, we can regard C as a module
over Spgr in PrL,gr. There is a colimit-preserving graded functor

F : Spgr → C
X• 7→ X• ⊗ G.

By [Lur09, Corollary 5.5.2.9], F admits a graded right adjoint R. We will show that (C, G) lies
in the essential image of the fully faithful functor AlgE1

(Spgr) → ModSpgr(PrL)Spgr/− of [Lur17,
Theorem 4.8.5.5]. By [Lur17, Proposition 4.8.5.8], it suffices to show the following:

(a) The functor R preserves geometric realizations of simplicial objects.

(b) The functor R is conservative.

(c) For every object M ∈ C and every spectrum Y ∈ Sp, the canonical map θY,M : Y ⊗ G(M) → G(Y ⊗ M)
is an equivalence.

To prove (a), it suffices to show that R preserves all small colimits. Since R is exact, it suffices to
show that R preserves small filtered colimits, which follows from the fact that G is compact. To
prove (b), suppose we are given a map α : N → N′ such that R(α) is an equivalence, and let
N′′ := cofib(α). Then G(N′′) ≃ 0, so πn hom (G, N′′) vanishes as a graded spectrum (see Recollec-
tion 3.1.1(f)) for all n. Our assumption that {G}ℓ∈Z generate C implies that N′′ ≃ 0, so α is an
equivalence.

To prove (c), fix an M ∈ C and consider the collection E of spectra Y such that θM,Y is an
equivalence. Note that E is stable/closed under suspension and desuspension and closed under
colimits, so it suffices to show that S0 ∈ E , which is immediate.

Next, we prove a monoidal enhancement of Proposition A.2.1, or a graded enhancement of
[Lur17, Proposition 7.1.2.6].
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Proposition A.2.2. Let k ∈ Z>0 ∪ {∞}. The construction R 7→ LModgr
R determines a fully faithful

embedding
AlgEk

(Spgr) → AlgEk−1

(
PrL,gr

)
from the category of graded Ek-algebras in spectra to the ∞-category of graded Ek−1-monoidal presentable
∞-categories. An Ek-monoidal graded ∞-category C⊗ → E⊗

k belongs to the essential image if and only if

1. The ∞-category is stable and presentable, and if k > 1 the tensor product preserves small colimits
separately in each variable.

2. The unit object 1 ∈ C is compact.

3. The object 1 graded-generates C in the following sense: If M ∈ C is an object having the property that
Extn

C(1, M) ≃ 0 for all n as a graded spectrum (Recollection 3.1.1(f)), then M ≃ 0.

Proof. Full faithfulness follows from Corollary 5.1.2.6 of [Lur17] and Proposition A.1.9. One arrives
at the description of the essential image in the same manner as in the proof of Proposition A.2.1.
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erating hypothesis for the stable module category of a p-group”. In: J. Algebra 310.1
(2007), pp. 428–433.

[BGG78] I. N. Bernstein, I. M. Gel’fand, and S. I. Gel’fand. “Algebraic vector bundles on Pn and
problems of linear algebra”. In: Funktsional. Anal. i Prilozhen. 12.3 (1978), pp. 66–67.

[BH93] Winfried Bruns and Jürgen Herzog. Cohen-Macaulay rings. Vol. 39. Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1993, pp. xii+403.

40



[BHN22] Tobias Barthel, Drew Heard, and Niko Naumann. “On conjectures of Hovey-Strickland
and Chai”. In: Selecta Math. (N.S.) 28.3 (2022), Paper No. 56, 31.

[BL10] Mark Behrens and Tyler Lawson. “Topological automorphic forms”. In: Mem. Amer.
Math. Soc. 204.958 (2010), pp. xxiv+141.

[Bor53] Armand Borel. “Sur la cohomologie des espaces fibrés principaux et des espaces ho-
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