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1 Introduction

The object of dynamical systems is to study the evolution and behavior of a system over time, where ‘system’
refers to one of the following:

• A measure space (X,B, µ) with a family of measure-preserving maps Tn : X → X, i.e. for all A ⊆ X
measurable, µ(T−1(A)) = µ(A), such that Tn ◦ Tm = Tn+m.

• A topological space (Y, τ) with a family of continuous maps fn : Y → Y such that fn ◦ fm = fn+m.

We have been deliberately vague about the time–we can either take n,m ∈ N(or Z) or n,m ∈ R≥0(or R),
and we refer to these situations as discrete (resp. continuous) time systems (and in the latter case, we write
t instead of n). If our time variable includes negative numbers, we say that the system is reversible.

We study these systems up to conjugacy:

Definition 1. Let (Xi,Bi, µi), i = 1, 2 be two probability spaces and let Ti : (Xi,Bi, µi) → (Xi,Bi, µi) be
measure-preserving maps. Write T̃−1

i : Bi → Bi for the induced maps on σ-algebras. Then we say that
T1 and T2 are conjugate if there exists a measure algebra isomorphism Φ : (B2, µ2) → (B1, µ1) such that
ΦT̃−1

2 = T̃−1
1 Φ.

Some questions that naturally arise are:

• How do we describe and quantify the qualitative behavior of T?

• Can we find a computable invariant h of dynamical systems, i.e. such that if T, T ′ are conjugate, then
h(T ) = h(T ′)? If such an h exists, is it a complete invariant?

The goal of this paper is to give partial answers to the above questions, and then explore those answers in
the context of a particular system, the geodesic flow on a closed manifold of negative sectional curvature.

We start with some simple examples which will (a) illustrate how our definitions work/inform our intuition
and (b) provide computational tools and scaffolding by allowing us to reduce the study of some more complex
systems to these examples.

Example 2 (Two-sided shift). Let k ∈ Z≥0 and consider X :=
∏

Z{0, 1, . . . , k}. Given a finite sequence
(a1, . . . , an) ∈ {0, 1, . . . , k−1}, it turns out that specifying µ({(xℓ) | xq+1 = a1, . . . xq+n = an}) = 1

kn gives
a unique, well-defined measure on X, and the shift operator T : X

∼−→ X, T ((xk)k∈Z)ℓ = xℓ−1 is measure-
preserving.

The previous example can be generalized as follows.

Example 3 (Markov shift). Let P = (pij)0≤i,j≤k−1 be a stochastic matrix, i.e. a matrix with nonnegative
entries such that all the columns sum to 1, and let p⃗ = (p0, . . . , pk−1) be a probability vector satisfying∑k−1
j=0 pjipi = pj . Then we can modify the previous definition such that µ({(xℓ) | xq = a0 xq+1 =

a1 xq+n = an}) = pa0pa1a0 · · · panan−1
, and X with the shift operator T (but a different measure) is

referred to as a topological Markov chain XP or the two-sided (P, p⃗)-shift. If A is the k× k adjacency matrix
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Figure 1: Two iterates of the horseshoe map (image taken from [20]).

of a(n unweighted, finite) graph, we associate to A a stochastic matrix P by dividing each column by the
sum of its elements and we also write XA for the topological Markov chain associated to (P, (1/k, . . . , 1/k)).

Remark 4. Note that the condition on the measure in the previous example says that ‘inadmissible sequences
have measure zero.’ From the topological point of view, an equivalent construction would be to simply discard
the inadmissible sequences/restrict to the subspace of ‘admissible’ shifts, i.e. the subspace on those (xn)n∈Z
such that pxnxn−1

6= 0 for all n. Of course, the topological point of view also discards information recorded
by the measure.

Example 5 (Horseshoe map). Another example of a discrete time system is the horseshoe map, which
‘stretches and folds’ (see Figure 1).

Outline First, we introduce ergodicity, consider whether a few examples are ergodic, and state the Birkhoff
Ergodic Theorem. Next, we introduce both measure-theoretic and topological entropy, give computational
tools for computing each, and relate the various definitions of entropy. We briefly introduce geodesic flow on
the unit tangent bundle of a Riemannian manifold, then prove that the rate of volume growth in the universal
cover of a Riemannian manifold bounds the topological entropy of its geodesic flow from below. Finally, we
state the ergodicity of geodesic flow on a closed, Riemannian manifold of negative sectional curvature and
sketch the proof.

Conventions. We assume that all measures are σ-additive. When a measure or metric is fixed, we drop
it from the notation. In the following, T = T1 typically denotes a map corresponding to a discrete time
dynamical system, and we typically write ψ = (ψt)t∈R for continuous time systems, a.k.a. flows. Often,
a continuous system ψ is said to have a property defined for discrete time systems if its time 1 map ψ1

has said property. The flows we consider here are reversible, but we do not assume a discrete system T is
reversible unless explicitly indicated. In the following, most definitions have slightly different but completely
analogous versions for discrete time systems vs. continuous time systems, e.g. by simply replacing T by ϕ
and ∀n ∈ Z(N) by ∀t ∈ R(≥0). We state all definitions for the discrete time case and give an indication for
how some may be generalized for continuous time, but others are left to the reader. Similarly, we state all
definitions in their measure-theoretic versions and leave the reader to fill in the details occasionally when a
topological version is immediate (e.g. topological conjugacy as a counterpart to Definition 1). We assume
background in differential geometry at the level of [13] and some knowledge of measure theory.

The bulk of §2 and §3 can be found in Chapters 4 and 7 of [19], unless otherwise noted.

Acknowledgements. The author would like to thank Professor Laura DeMarco for stoking her interest
in dynamics and advising this minor thesis.

2 Ergodicity

Let (X,B, µ) be a probability space throughout this section, and let T : (X,B, µ) → (X,B, µ) be a measure-
preserving transformation. Note that if there was a measurable B ⊆ X such that T−1(B) = B and
T−1(Bc) = Bc, then we could study the restriction of T to B and its complement, respectively, so T is
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‘decomposable.’ However, if (WLOG) Bc had measure zero, then we should consider T and T |B to be
equivalent. This motivates our definition for ‘semisimplicity’ of a dynamical system.

Definition 6. We say T is ergodic if T−1B = B =⇒ µ(B) = 0 or µ(B) = 1.

If (ψt)t∈R is a flow, then we say that (ψt) is ergodic if ψ−1
t B = B for all t implies µ(B) = 0 or µ(B) = 1.

Proposition 7. Let (X,B, µ) be a probability space and T : X → X a measure-preserving transformation.
Then the following are equivalent

1. T is ergodic.

2. The only measurable subsets B ⊆ X with µ(B \ T−1B ∪ T−1B \B) = 0 are those B with µ(B) = 0 or
µ(B) = 1.

3. For all measurable A with µ(A) > 0, we have that µ
(⋃

n≥1 T
−nA

)
= 1.

4. For every A,B such that µ(A), µ(B) > 0, there exists n > 0 such that µ(A ∩ T−nB) > 0.

Note that such T also acts on measurable functions f : X → R via pullback: T ∗(f) := f ◦ T , and we can
also characterize ergodicity of T in terms of how it acts on functions.

Proposition 8. Let (X,B, µ), T : X → X be as above and let f : X → R. Then TFAE:

1. T is ergodic.

2. For any measurable f : X → R such that T ∗f(x) = f(x) for all x ∈ X, f is constant a.e.

3. For any measurable f : X → R such that T ∗f(x) = f(x) a.e., f is constant a.e.

Remark 9. We call functions satisfying condition 2 of Proposition 8 T -invariant, and functions satisfying
condition 3 strictly T -invariant.

We will use the following proposition in the proof of Theorem 66.

Proposition 10. Let T (resp. (ϕt)) be a measurable function (resp. flow) on a measure space (X,B, µ), and
let f : X → R be a T -(resp. ϕ-)invariant function. Then there is a strictly T -(resp. ϕ-)invariant measurable
function f̃ such that f = f̃ a.e.

Recall: any locally compact topological group G has a unique measure µ which is invariant with respect to
left multiplication, which is referred to as the Haar measure. If G is compact, then µ(G) <∞.

Example 11. Let X = S1 considered as a subset of the complex plane, and let µ be the Haar measure on S1.
Then for any angle θ ∈ S1, the rotation T : S1 → S1, z 7→ θz is ergodic if and only if θ is not a root of unity.

The previous example can be generalized in the following way:

Proposition 12. Let G be any compact topological group and let Ta : G→ G be left multiplication by some
element a ∈ G. Then Ta is ergodic iff {an | n ∈ Z} is dense in G.

In particular, if Ta is ergodic, then G is abelian.

Example 13. Let T be the topological Markov shift. Then T is ergodic if and only if the matrix P is
irreducible, i.e. if, for all i, j there exists n > 0 such that (Pn)ij > 0. Note that if P comes from the
adjacency matrix of a graph, this is equivalent to asking that the graph be connected.

Let T (resp. (ψt)) be an ergodic transformation (resp. flow). From the equivalent conditions in Proposition
7, one interpretation is that a set A of positive measure visits, or leaves a ‘footprint’ (under T , resp. ψ
iteration) everywhere in X. The following theorem makes this precise, and shows that the footprint is
uniformly distributed in some sense:

Theorem 14 (Birkhoff). Let (X,B, µ) be a probability space and let f ∈ L1(X,B, µ).
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1. Let T be a measure-preserving map T : X → X. Then

1

n

n−1∑
i=0

f(T i(x))

converges a.e. to a function f∗ ∈ L1(X,B, µ). Moreover, f∗ is T -invariant, and
∫
f∗dµ =

∫
fdµ.

2. Let (ψt) be a measure-preserving flow ψt : X → X. Then

f+(x) = lim
T→∞

1

T

∫ T

0

f(ψtx)dt f−(x) = lim
T→∞

1

T

∫ −T

0

f(ψtx)dt

exist and are equal a.e. Moreover, f± are µ-integrable and ψ-invariant, and
∫
fdµ =

∫
f±dµ.

Remark 15. It follows from the above that if T is ergodic, then f∗ is constant a.e., so∫
X

fdµ = lim
n→∞

n−1∑
i=0

f(T i(x)) ,

hence the Birkhoff ergodic theorem is often summarized as ‘time average equals space average.’

3 Entropy

We define measure-theoretic entropy and topological entropy, motivate the definition via information theory,
and state a variational principle relating the two. We start by introducing entropy of a discrete time
dynamical system, then explaining how it can be generalized to a continuous time dynamical system. The
reason for this is two-fold: because the definition is easier to state for the discrete time case, and also because
we will see examples where we can estimate the entropy of a continuous flow via the entropy of a discrete
‘subsystem.’

3.1 Measure-theoretic

We use the convention that 0 ln 0 = 0. In the following, we fix a probability space (X,B, µ), and it is
understood that all definitions are implicitly with respect to the measure µ.

Definition 16. A finite partition η = {A1, . . . , An} of X is a collection of disjoint subsets of X such that
∪iAi = X.

Given two partitions η = {Ai}, ξ = {Bj}, we define their join to be η ∨ ξ := {Ai ∩ Bj}. We denote the
iterated join of a finite collection of partitions η1, . . . , ηk by

∨
ℓ ηℓ.

Given (X,B, µ) as above, the (measure-theoretic) entropy h(η) of a finite partition η = {A1, . . . , An} is
defined as

h(η) := −
∑
i

µ(Ai) lnµ(Ai) . (17)

Remark 18. There is a one-to-one correspondence between finite partitions of X and finite σ-subalgebras
of B: To a partition η we associate the subalgebra A(η) ⊆ B on all finite unions of elements of η, and to
a finite σ-subalgebra C = {Ci} ⊆ B we associate the partition η(C) whose elements are finite intersections
Ci1 ∩ Cik ∩ Ccj1 ∩ C

c
jℓ

.

Remark 19. One way to think about the entropy of a partition is as follows: For a measurable subset A ⊆ X
of a probability space, consider the quantity − lnµ(A). We can think about this number as measuring the
amount of information, or how ‘surprising’ the event A is. If µ(A) = 1, i.e. A occurs with probability 1,
then it is not surprising: − ln 1 = 0. However, if µ(A) � 1, i.e. A is a rare event, then it is very surprising
when it does occur: − lnµ(A) � 1. The quantity lnµ(A) is called the Shannon information of the event A,
and the entropy is the expectation of the information.
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If T : (X,B, µ) → (Y,B′, µ′) is a measure-preserving transformation of probability spaces, then T−1 takes
finite partitions of Y to finite partitions of X.

Note that the entropy of a partition η is equal to the entropy of any finite collection η′ = {C1, . . . , Cn} of
subsets of X with the property that µ(Ai \ Ci ∪ Ci \Ai) = 0 for all i.

Notation 20. Let C,D be σ-subalgebras of the σ-algebra B. We write C
◦
⊆ D if for all C ∈ C, there exists

D ∈ D such that µ(C \D ∪D \ C) = 0, and we write C ◦
= D if the previous condition also holds with C,D

interchanged.

Given the above discussion, the definition of conditional entropy H(ξ/η) follows naturally: it is the the
expectation of (information given by the events of the partition ξ, given that we know the outcome of η):

H(ξ/η) := −
∑
A∈η

µ(A)
∑
B∈ξ

µ(A ∩B)

µ(A)
ln
µ(A ∩B)

µ(A)
(21)

It turns out that the function −
∑
i µ(Ai) lnµ(Ai) is universal in some sense:

Theorem 22. [12] Let ∆n := {(x0, . . . , xn) ∈ Rn+1 |
∑
i xi = 1 xi ≥ 0}, and consider ∆n as a subset of

∆n+1 via the inclusion (x0, . . . , xn) 7→ (x0, . . . , xn, 0). Write ∆ := ∪n≥0∆
n.

Suppose we are given a function g : ∆ → R satisfying

1. g ≥ 0, and g(x0, . . . , xn) = 0 if and only if xi = 1 for some i.

2. g is continuous, i.e. its restriction to each ∆n is continuous

3. g is symmetric

4. The restriction of g to ∆n achieves a maximum at the point
(
1
n , . . . ,

1
n

)
5. g(ξ) = g(η) + g(ξ/η).

Then there exists some constant C > 0 such that g(x0, . . . , xn) = −C
∑n
i=0 xi · ln(xi) on each ∆n.

Thus we can also think of entropy (of a partition) as measuring the level of granularity that the partition η
sees.

Definition 23. Let T : (X,B, µ) → (X,B, µ) be a measure-preserving transformation of a probability space
and η a finite partition of A. The entropy of T relative to the partition η is given by

h∗(T ; η) := lim
N→∞

1

N
h

(
N−1∨
i=0

T−i(η)

)
. (24)

Note that while the definition of entropy of a partition takes a ‘space average,’ here we can think of taking
the limit over N as a ‘time average.’

That the limit in (24) exists follows from the

Proposition 25. Let {an}n≥1 be a sequence of real numbers such that an+k ≤ an + ak for all n, k. Then
limn→∞

an
n exists and equals infn

an
n .

Definition 26. The (measure-theoretic) entropy of a measure-preserving map T : X → X is given by the
supremum over all finite partitions

h∗(T ) = sup
η
h∗(T ; η) . (27)

Remark 28. It is immediate from the definition that the entropy of the identity map is zero, and for any T ,
h∗(T ) ≥ 0 (possibly ∞).

By the above discussion on entropy of a partition, we can think about entropy as measuring ‘the rate at
which the inverse image map T−1 increases granularity.’
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Let T be the double cover map on S1 If we let α be the open cover {(0 − ε, π + ε), (π − ε, 0 + ε)}, then
α ∨ T−1α has cardinality 4, and α ∨ T−1α ∨ T−2α has cardinality 8. Thus we might guess that the entropy
of this map to be around ln 2. In fact, we have the

Proposition 29. [4] Let f : S1 → S1 be a continuous self-map of the circle (not necessarily a group
homomorphism or rotation.) Then h∗(f) ≥ ln |deg f |, where deg f is the topological degree of f .

Note that the previous example establishes a connection between the rate of expansion of f and its entropy.
We will make the connection between expansion and entropy precise in considering the entropy of geodesic
flow on the universal cover of a Riemannian manifold with negative sectional curvature.

3.1.1 Properties & calculations

Theorem 30. Let T be a measure-preserving transformation of a probability space (X,B, µ).

1. For k > 0, h∗(T k) = k · h∗(T ).

2. If T is invertible, then h∗(T k) = |k| · h∗(T ) for all k ∈ Z.

Proof of 1. We show that h∗
(
T k,

∨k−1
i=0 T

−iξ
)
= k · h∗(T, ξ):

lim
n→∞

1

n
h∗

n−1∨
j=0

T−kj

(
k−1∨
i=0

T−iξ

) = lim
n→∞

k

nk
h

nk−1∨
j=0

T−jξ

 = k · h(T, ξ) .

Next, we state some properties of h∗ which allow us to compute our first examples.

Proposition 31. Let T be a measure-preserving transformation of a probability space (X,B, µ), and let A, C
be finite σ-subalgebras of B.

1. h∗(T, C) ≤ h∗(T,A) + h(C/A)

2. h∗(T,A) = h∗(T, T−1(A))

3. If T is invertible, then for any k ≥ 1, h∗(A) = h∗
(∨n

j=−n T
n(A)

)
4. If An is an increasing sequence of finite σ-subalgebras of B, and C is a finite σ-subalgebra of B such

that C
◦
⊂
∨
nAn, then h (C/

∨
nAn) → 0 as n→ ∞.

Theorem 32 (Kolmogorov-Sinai). Let T be an invertible, measure-preserving transformation of a probability
space (X,B, µ), and let A be a finite σ-sub algebra of B such that

∨∞
n=−∞ Tn(A)=̊B. Then h∗(T ) = h(T ;A).

Proof. Let C ⊆ B some finite σ-subalgebra. Then by the previous proposition,

h∗(T, C) ≤ h∗

T ; n∨
j=−n

Tn(A)

+ h

C/
n∨

j=−n
Tn(A)


= h∗ (T ;A) + h

C/
n∨

j=−n
Tn(A)

 ,

and the term on the right side goes to 0 as n→ ∞ by Proposition 31.

Proposition 33. The two-sided (P, p⃗) Markov shift has entropy −
∑
i,j pipji ln pji.
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Proof. Consider the partition ξ = {Ai}i=0,1,...,k−1 where Ai = {(xn)n∈Z | x0 = i}. Then by definition of
the σ-algebra on

∏
Z{0, 1, . . . , k − 1}, the finite σ-subalgebra A(ξ) associated to ξ satisfies

∨
n∈Z T

nA = B.
Therefore we can apply Theorem 32:

h∗(T ) := lim
N→∞

1

N
h

(
N−1∨
i=0

T−i(ξ)

)
.

A typical element of ξ ∨ T−1ξ ∨ · · · ∨ TN−1ξ is

Ai0 ∩ T−1Ai1 ∩ · · · ∩ T−(N−1)AiN−1
= {(xn) | x0 = i0, . . . , xN−1 = iN−1}

which has measure pi0pi1i0 · · · piN−1iN−2
, so

1

N
h

(
N−1∨
i=0

T−i(ξ)

)
= −

k−1∑
i0,i1,...,iN−1

pi0pi1i0 · · · piN−1iN−2

(
ln pi0 + ln pi1i0 + · · · ln piN−1iN−2

)
= −

k−1∑
i0=0

pi0 ln pi0 − (N − 1)

k−1∑
i,j=0

pipji ln pji

Thus h∗(T ) = −
∑k−1
i,j=0 pipji ln pji.

3.1.2 As a conjugacy invariant

Theorem 34. If Ti : (Xi,Bi, µi) → (Xi,Bi, µi), i = 1, 2 are conjugate, then h∗(T1) = h∗(T2).

Remark 35. h∗ is not a complete invariant, i.e. there exist two non-conjugate systems with equal entropy.

3.2 Topological

The definition of topological entropy is analogous to that of measure-theoretic entropy, but we take open
covers instead of finite partitions and consider the sets in an open cover to be equally weighted (instead of
using a measure). Since we’d like to restrict ourselves to finite covers, we consider first compact subsets K
of a topological space X and then take the supremum over all such K.

Definition 36. Let α, β be open covers of a topological space X. Their join α ∨ β is the open cover

α ∨ β = {A ∩B | A ∈ α,B ∈ β}

We say that β is a refinement of α if for all B ∈ β, there exists A ∈ α such that B ⊆ A, and we write α ≤ β.

Clearly we have that α ≤ α ∨ β.

Definition 37. Let α be an open cover of a topological space. Let N(α) be the cardinality of a minimal
subcover of α. Then we define the entropy of α to be h(α) = lnN(α).

Remark 38. α ≤ β implies that H(α) ≤ H(B)

The same lemma 25 implies the

Theorem 39. Let α an open cover of X and T : X → X a continuous map. Then

lim
n→∞

1

n
H(α ∨ T−1α ∨ · · · ∨ Tn−1) (40)

exists.

Definition 41. We define the topological entropy h(T ;α) of T relative to the open cover α to be the limit
in the theorem above, and we define the topological entropy of T to be the supremum of the relative entropy
over all open covers of X, i.e. h(T ) = supα h(T ;α).
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The following proposition will allow us to bound the entropy of a system by a simpler ‘quotient system.’

Proposition 42. Let X1, X2 be compact spaces and let Ti : Xi → Xi be continuous maps. If ϕ : X1 → X2

is a continuous map such that the following diagram commutes

X1 X1

X2 X2

T1

ϕ ϕ

T2

,

then h(T1) ≥ h(T2).

3.2.1 Via separated/spanning sets

Throughout this section, (X, d) is a metric space and T : X → X a uniformly continuous (with respect to
d) function. Implicitly, all definitions in this section are understood to be with respect to d. For some metric
space (Y, δ), we denote the closed ball of radius r ≥ 0 centered at y ∈ Y by Bδ(y, r) := {z ∈ Y | δ(y, z) ≤ r},
and the open ball by Bδ(y, r).

For each n ∈ N, we can consider a new metric:

dn(x, y) = max
0≤i≤n−1

d(T i(x), T i(y)). (43)

Note that we can express the balls with respect to dn as an intersection:

Bdn(x, r) =

n−1⋂
i=0

T−iB(T i(x), r) (44)

Note that (fixing d and T ), the balls Bdn get (potentially) smaller, i.e. in view of the metric dn, the points of
X get (potentially) further apart as n→ ∞. If we think about y with d(x, y) < ε as a ‘good approximation’
of x, we can think about dn as asking: is y still still a good approximation to x after taking n applications
of the function T into account?

We introduce two candidates for the definition of topological entropy, and give an indication for the proof
that they are in fact the same.

Definition 45. Let n ∈ N, ε ≥ 0, and K ⊆ X be a compact subset.

• A subset F ⊆ K (n, ε)-spans K with respect to T if, for all x ∈ K, there exists y ∈ F such that
dn(x, y) ≤ ε.

Let rn(ε,K) be the smallest cardinality of any (n, ε)-spanning set with respect to T .

• A subset E ⊆ K is (n, ε)-separated with respect to T if, for all pairs of distinct points x 6= y ∈ E we
have that dn(x, y) ≥ ε.

Let sn(ε,K) be the largest cardinality of any (n, ε)-separated set with respect to T .

• We define the topological entropy of T with respect to K (and d) to be

h′(T ;K) = lim
ε→0

r(ε,K, T ) h′′(T ;K) = lim
ε→0

s(ε,K, T ) . (46)

• Finally, the topological entropy of T (w.r.t d) is given by by taking the supremum over all compact
subsets K of X:

h′(T ) := sup
K⊆X cpct

h(T ;K) h′′(T ) := sup
K⊆X cpct

h′(T ;K) . (47)
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Remark 48. The intuition for the first definition is: If a function ‘spreads points out,’ then it should be harder
to approximate a compact subset by a finite collection of points with respect to dn as n grows; in particular,
positive topological entropy corresponds to the case when the number of points needed to approximate a
compact subset (under n iterations of T ) grows exponentially in n.

One can think of the second definition as follows: If the ε-balls in the metric dn shrink as n grows, we
should be able to fit more non-overlapping ε-balls in the compact subset K. Positive topological entropy
here corresponds to being able to fit exponentially more balls (with respect to dn) as n grows.

That h′ and h′′ are equal follows from the following argument.

Claim. rn(ε,K) ≤ sn(ε,K) ≤ rn(ε/2,K).

Proof sketch. Let E be an (n, ε)-separated subset of K of maximal cardinality. Then by definition E is also
a (n, ε)-spanning subset of K, so rn(ε,K) ≤ sn(ε,K). Now if E is as above and F is rn(ε,K) ≤ sn(ε/2,K)-
spanning, then for each e ∈ E we can choose an f ∈ F such that dn(e, f) ≤ ε

2 . This is an injection E → F ,
so |E| ≤ |F |.

Fact 49. If T is an isometry then h′(T ) = 0.

3.2.2 Properties

Theorem 50. let (X, d) be a metric space and T : X → X a map which is uniformly continuous w.r.t. d.
If K ⊆ K1 ∪ · · · ∪Km are all compact subsets of X, then we have that

h′(T ;K) ≤ max
i
h′(T ;Ki) (51)

Proof sketch. For each n, we may bound sn(ε,K) by m · maxi sn(ε,Ki) = m · sn(ε,Kin) for some in ∈
{1, . . . ,m}. By the pigeonhole principle, we can choose a sequence such that in is constant (i.e. in = im for
all n,m), and when we take the natural log and divide both sides by n and take the limit as n goes to ∞,
the term 1

n lnm goes to zero.

The previous theorem allows us to bound the entropy of a system by a simpler ‘subsystem.’

Dependence on the metric d Now we explore the dependence of h′d(−) on the metric d.

Theorem 52. If d, δ are two metrics on a topological space which are uniformly equivalent, i.e. the identity
map (X, d) → (X, δ) is uniformly continuous (and vice versa), then for any uniformly continuous map
T : X → X (note that if T is uniformly continuous in one metric, then it is in both), we have hd(T ) = hδ(T ).

Note that it is not sufficient for d and δ to induce the same topology on X, as the following non-example
shows.

Non-example 53. Let X = R>0 and T : X → X be the multiplication by 2 map. Then

• If d is the usual/Euclidean metric on R>0, then hd(T ) = ln 2.

• Let δ be the metric on R with the property that the map Tn : ([1, 2], d) → ([2n, 2n+1], δ) is an isometry
for all n ∈ Z. Since T is an isometry with respect to δ, hδ(T ) = 0 by Fact 49.

Theorem 54. Let (X, d) be a compact metric space and T : X → X a continuous map. Then h′(T ) = h(T ),
i.e. the aforementioned three definitions of topological entropy all agree.
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3.2.3 Computational tools & examples

We say that an open cover α of a topological space X is a generator for T : X → X if for every sequence
(An)n∈Z of elements of α, the intersection

⋂∞
n=−∞ T−nAn contains at most one point of X.

A map T : X → X of a compact metric space is said to be expansive if for all ε > 0 and all x 6= y ∈ X, there
exists n ∈ N such that d(Tn(x), Tn(y)) ≥ ε.

Theorem 55. Let T : X → X be an expansive homemorphism of a compact metric space (X, d). Then if α
is a generator for X, h(T, α) = h(T ).

This is the topological analogue of Theorem 32.

Corollary 56. Let X =
∏

Z{0, . . . , k− 1} and let T be the two-sided shift in Example 2. Then h(T ) = ln k.

Proof. Consider the generator α = {Aℓ | ℓ = 0, . . . , k − 1} where Aℓ = {(xn) | x0 = ℓ}. Then we apply the
previous theorem to compute

h(T ) = h(T ;α) = lim
n→∞

1

n
lnN

(
α ∨ T−1α ∨ · · · ∨ Tn−1α

)
= lim
n→∞

1

n
ln kn = ln k

With a little more work one can show that

Proposition 57. Let A be a k × k matrix with entries in {0, 1}. The entropy of the topological Markov
chain TA : XA → XA (Example 3) is given by h′(TA) = lnλ where λ is the largest positive eigenvalue of A.

3.3 Variational principle

Let X be a metric space, and let B be the σ-algebra of Borel subsets of X, i.e. the σ-algebra generated by the
open sets in X with respect to the topology induced by the metric. For any continuous map T : X → X, T
induces a map of σ-algebras which we denote by T̃ : B → B. Let M(X,T ) = {µ probability measure on X |
T̃ µ = µ}, i.e. the measures which are invariant under T .

Theorem 58. Let T be a continuous map of a compact metric space X. Then h(T ) = supµ∈M(X,T ) h
∗
µ(X).

Remark 59. Consider the 2-sided topological Markov chain TA : XA → XA with transition matrix A =0 1 1
1 0 1
1 1 0

.By Proposition 57, we have that the topological entropy of TA is given by h(TA) = ln 2. By

Proposition 33, we have that the measure-theoretic entropy of TA = TP is h∗(TA) =
∑
i,j pjipi ln pji = ln 2,

so we see that the supremum in Theorem 58 is achieved.

4 Geodesic flow

For the rest of this note, we let (M, | · |) be a smooth Riemannian manifold1. (Occasionally we omit ‘smooth’
or ‘Riemannian.’) Unless otherwise stated, assume M is compact, connected, and complete.

Let v ∈ TxM a tangent vector at M and let γ : R → M the unique geodesic such that γ(0) = x and
γ′(0) = v. Note that because geodesics are constant speed [13, 5.5], the parallel translate of v along γ has
constant length, and the following is well-defined:

Definition 60. Given an n-dimensional Riemannian manifold M , we write SM for the unit tangent bundle,
i.e. the collection of all tangent vectors v ∈ TM with |v| = 1.

1While we need less than C∞, we do not concern ourselves here with obtaining minimal hypotheses

10



The geodesic flow on a complete Riemannian manifold is the flow on the unit sphere bundle:

ϕt :SM → SM

v 7→ parallel translate of v to γ(t) .

5 Entropy of geodesic flow

In this section, we explore how the entropy of geodesic flow has a ‘geometric’ interpretation by showing it is
bounded from below by the growth of volume of a ball of radius r in the universal cover. We show that the
bound is not sharp in §5.2.

Denote the universal cover of M by M̃ . Note that the metric on M pulls back to a metric on M̃ ; in particular,
this gives a natural volume form on M̃ .

5.1 Entropy and volume growth

The proofs in this section follow the paper [14].

Proposition 61. Let M be a complete, compact, connected Riemannian manifold with ∂M = ∅. For
x ∈ M̃ , let B(x, r) be the ball of radius r and center x, and V (x, r) the volume of B(x, r). Then

lim
r→∞

1

r
V (x, r) =: λ (62)

exists and is independent of x ∈ M̃ .

Proof. Let N ⊆ M̃ be a fundamental domain, and let a > 0 be the diameter of N . Then for all r > a and
all x, y ∈ N , we have that

B(x, r − a) ⊆ B(y, r) ⊆ B(x, r + a).

Therefore, for all r > a and all x, y ∈ N ,

V (x, r − a) ≤ V (y, r) ≤ V (x, r + a)

so if the limit in (62) exists, it is unique.

Next we show that the limit exists: For any r, s > 0, we have that B(x, r+ s) ⊆
⋃
y∈B(x,r)B(y, s), so if S is

a maximal set of points in B(x, r) which are pairwise at least b
2 apart, then

|S| ≤ V (x, r + b/2)

infz∈B(x,r) V (z, b/2)
and B(x, r + s) ⊆

⋃
y∈S

B(y, s+ b).

We may assume that V (x, r) is unbounded, otherwise the limit clearly exists and = 0. (For notational ease)
choose b > 0 such that infz∈B(x,r) V (z, b/2) = 1. Then we have that

V (x, r + s) ≤ |S| · V (y, s+ b)

≤ V (x, r + b/2) · V (x, s+ b+ a).

By moving each y ∈ S closer to x by b/2 and enlarging the balls accordingly, we see that

V (x, r + s) ≤ V (x, r) · V (x, s+ 3b/2 + a).

Let us fix s > 0, and write A = 3b/2+a. Then the last inequality allows us to control V (x, r) as we ‘increment
by s’: If ks ≤ r < (k + 1)s, then

V (x, r) ≤ V (x, (k + 1)s) ≤ V (x, ks)V (x, s+A)

≤ V (x, s) · V (x, s+A)k

∴ 1

r
lnV (x, r) ≤ 1

r
lnV (x, s) +

k

r
lnV (x, s+A)

≤ 1

r
lnV (x, s) +

1

s
lnV (x, s+A).

11



Letting r go to infinity, we see that lim supr→∞
1
r lnV (x, r) ≤ 1

s lnV (x, s+A). Since s was arbitrary, we can
now pass to the limit as s→ ∞ to obtain:

lim sup
r→∞

1

r
lnV (x, r) ≤ lim inf

s→∞

1

s
lnV (x, s+A) = lim inf

s→∞

1

s
lnV (x, s)

hence the limit exists.

Example 63. When Mn+1 has constant sectional curvature κ < 0, then by [6, III.4.1],

V (x, r) = C

∫ r

0

(
1√
−κ

sinhκρ

)dimM−1

dρ ∼ C ′enkr ,

so λ = (dimM − 1)
√
|κ|.

Now we relate the rate of volume growth to the entropy of geodesic flow:

Theorem 64. Let M be a compact Riemannian manifold and let ϕt be the geodesic flow on SM . Then
h(ϕ) ≥ λ, where λ is the growth rate defined in Proposition 61.

Proof. Let δ > 0 be small and consider B(x, r + δ/2) \ B(x, r). Given ε > 0, for all r sufficiently large, we
have e(λ−ε)r ≤ V (x, r) ≤ e(λ−ε)r.

Claim. V (x, r + δ/2)− V (x, r) ≥ e(λ−ε)r for some sequence r ∈ {r1, r2, . . .} such that ri → ∞.

Suppose not, i.e. suppose that V (x, r + δ/2) − V (x, r) ≥ e(λ−ε)r for all r sufficiently large. Then we have
that for some r and all N � 0,

V (x, r +Nδ/2) ≤ N · e(λ−ε)r + V (x, r)

∴ 1

r +Nδ/2
lnV (x, r +Nδ/2) ≤ 1

r +Nδ/2
ln
(
N · e(λ−ε)r + V (x, r)

)
,

but taking N → ∞ gives a contradiction.

Returning to the proof at hand: for r ∈ {r1, r2, . . .}, choose a maximal subset Qr of B(x, r + δ/2) \ B(x, r)
whose points are pairwise ≥ 2δ apart. Then

|Qr| ≥
V (x, r + δ/2)− V (x, r)

supz∈M V (z, 2δ)
≥ C · e(λ−ε)r.

Since each q ∈ Qr can be joined to x by a geodesic of length between r and r + δ/2, we now show that unit
tangents for the aforementioned geodesics form a (r + δ/2, δ)-separated set for the geodesic flow on M̃ .

Denote the projection map by π : SM̃ → M̃ . Let p, q ∈ Qr and let v, w ∈ SM the respective corresponding
unit tangent vectors at x. Then we can choose a metric d1 on SM such that

2δ < d(p, q) ≤ d(p, π ◦ ϕr(v)) + d(π ◦ ϕr(v), π ◦ ϕr(w)) + d(π ◦ ϕr(w), q)
≤ δ + d(π ◦ ϕr(v), π ◦ ϕr(w))

∴ d1(ϕr(v), ϕr(w)) ≥ d(π ◦ ϕr(v), π ◦ ϕr(w)) ≥ δ.

Thus we have that
h(ϕ) ≥ lim

n→∞

1

rn
ln |Qrn | ≥ λ− ε.

Since ε was arbitrary, we are done.
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Figure 2: The pair of pants P , with segments a, b, c colored blue, red, green, respectively.

5.2 A non-example

Unlike in the case of constant sectional curvature (Example 63) where the bound obtained was sharp, we
sketch an argument for producing manifolds such that the difference between λ and h(ϕ) is arbitrarily large,
following [15]. Note that since we know the bound is sharp for compact closed manifolds of uniform sectional
curvature, a non-example must involve local distortions.

Let P be the ‘pair of pants’ in Figure 2, and consider geodesics which remain in P for all time. Note that
any such geodesic must, after ≥ diam(P ) time cross the segment a, then {b or c}, and if it crosses b it must
cross a or c next,... Thus the space of such geodesics maps to the product

∏
Z{a, b, c}, and there is some

finite L > 0 such that ϕL corresponds to the shift operator on the product. Thus we have shown that the
space of such geodesics surjects onto the 2-sided topological Markov chain TA : XA → XA with transition

matrix A =

0 1 1
1 0 1
1 1 0

. By Proposition 57, we have that the entropy of TA is given by h(TA) = ln 2, and

Proposition 42 implies that this is a lower bound for the entropy of ϕdiam(P ). By our definition of entropy
of a flow, h(ϕ) = h(ϕ1) =

1
|t|h(ϕt), so we can make the entropy of the geodesic flow on P arbitrarily high by

shrinking P .

Adding two caps to P to obtain a disk and take the product with an (n − 2)-dimensional ball gives a
contractible n-manifold Q (with boundary) with geodesic flow of arbitrarily high entropy. Finally, we connect
sum Q onto any smooth n-manifold M to increase the entropy of the geodesic flow on M while remaining
diffeomorphic to the original. In sum, we have shown

Theorem 65. [15] Any compact, smooth manifold of dimension ≥ 2 admits Riemannian metrics with
arbitrarily high values of topological entropy.

6 Ergodicity of geodesic flow

The goal of this section is to sketch the proof of the following result, modulo some technical lemmas.

Theorem 66. [8, 7, 1, 2, 9] Let M be a compact closed Riemannian manifold which is complete and has
negative sectional curvature. Then the geodesic flow ϕt : SM → SM is ergodic, i.e. if f : M → R is an
integrable function which is invariant respect to ϕ, then f is constant a.e.

The proof proceeds via the following steps:

1. Given v ∈ SM , define the stable and unstable manifolds W s,Wu of v. The foliation of SM by the
orbits of the geodesic flow, taken together with W s and Wu are a collection of transverse foliations of
SM .

2. Show that, if f is invariant with respect to the geodesic flow, then f is constant a.e. on the leaves of
W s and Wu.

3. Show that gt satisfies an exponential decay property as one considers the leaves of W s along a geodesic.
(The same holds for Wu with the time reversed.) This will allow us to show that W s(v) satisfies a
‘weak continuity property’ in v.
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Note: It turns out that this exponential decay property (on a manifold satisfying the same assumptions)
is a sufficient condition for a flow to be ergodic, so our proof applies to this broader class of flows.

4. The previous step will allow us to apply a Fubini-style argument, i.e. to write the volume element on
SM locally as (a multiple of) dtdsdu where dt, ds, du are measures on the orbits of the geodesic flow,
W s, and Wu, resp. Thus we can apply 2 to conclude that f is constant a.e.

We follow the proof in the Appendix to [3] by M. Brin, interspersed with an example/special case from [16].
An exposition involving similar ideas can be found in Chapters 5-6 of [5].

6.1 Stable and unstable manifolds

Definition 67. Let M be a compact Riemannian manifold and let ϕt a flow on M . For x ∈ M , the stable
and unstable sets of x are given by

W s(x) = {y ∈M | d(ϕtx, ϕty) → 0 as t→ ∞}
Wu(x) = {y ∈M | d(ϕtx, ϕty) → 0 as t→ −∞} .

In fact these sets are submanifolds.

Theorem 68 (Hadamard-Perron). Let M be a smooth manifold and let ϕt be a Cr flow on M . Then W s(·)
and Wu(·) are a family of Cr submanifolds of M .

A precise statement of Theorem 68 can be found in [11, Thm. 10.1.6.], and a proof can be found in [10,
Thm. 6.2.8.].

Remark 69. The stable and unstable manifolds can be pictured as ‘wavefronts’ for the flow.

Example 70. [16] Consider a compact surface Σ with constant negative curvature. Its universal cover cover
is the hyperbolic plane, i.e. Σ can be written as a quotient Γ\H where H is the upper half-plane {(x, y) ∈
R2 | y > 0} equipped with the metric 1

y (dx
2 + dy2) and Γ ' π1(Σ) is a group acting totally discontinuously

on H. We consider the (un)stable sets on SH first.

Let v ∈ TzH be a unit tangent vector. Then v specifies a unique geodesic γv : R → H with γ(0) = z and
γ′(0) = v. Let C(z, r) denote the circle (in the hyperbolic metric) with center z and radius r, and consider
the collection of sets C(γ(t), t) as t → ∞. (Note: Since z ∈ C(γv(t), t) for all t, it is nonempty.) The
positive/negative horospheres are defined to be the limits

S±(v) = lim
t→±∞

C(γ(t), |t|) ,

and the stable (resp. unstable) sets of v are the inward (resp. outward) normals to the positive (resp.
negative) horospheres (see Figure 70). Note: if v is a vertical tangent vector, then the horospheres S±(v)
are the horizontal line through z.

Definition 71. The horocycle flows h±t are defined as

h±t :SH → SH
v 7→ translate v clockwise (resp. counterclockwise) along S±(v) at unit speed .

Proposition 72. Let ϕ = (ϕt) a continuous flow on a compact manifold M which preserves a finite measure
µ on X which is positive on open sets of X. Let f : M → R be measurable and ϕ-invariant. Then f is
constant a.e. on (un)stable submanifolds, i.e. there exists sets Ns, (resp. Nu) of measure zero such that for
any x, y ∈M such that x ∈ V s(x) (resp. V u(x)) and x, y /∈ Ns (resp. Nu), f(x) = f(y).

A heuristic/reason one might believe the proposition is true is: Suppose we assumed f was continuous
(therefore uniformly continuous, since M is compact). Let x, y lie on the same stable submanifold. By
uniform continuity, for all ε > 0, there exists δ > 0 such that d(z, w) < δ =⇒ |f(z) − f(w)| < ε. If we
choose T � 0 such that for all t ≥ T , we have d(ϕtx, ϕty) < δ. Then we can use the ϕt-invariance of f to
obtain that |f(x)− f(y)| < ε.
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v

Figure 3: Positive and negative horospheres. The positive horosphere for v is given by the collection of
inward normals to the thick green circle, and the negative horosphere for v is given by the collection of
outward normals to the thick blue circle. The thin blue and green arcs indicate other geodesics (of vectors
on the same horosphere).

While we cannot use the ‘proto-argument’ above, we can approximate f arbitrarily well by continuous
functions hm (and apply Theorem 14 to the difference f − hm), which turns out to be sufficient.

6.2 Absolutely continuous foliations

Here we develop some of the theory necessary to make sense of continuity of W s(·),Wu(·).

Definition 73. Let N be a n-manifold. A partition V of N into connected k-dimensional C1-submanifolds
W (x) 3 x is a k-dimensional C0-foliation of N with C1-leaves if, for every x ∈ N , there is a neighborhood
Ux 3 x and a homeomorphism

w = wx :Bk ×Bn−k → Ux

(0, 0) 7→ x such that

1. w(Bk × {z}) is the connected component of Ux ∩W (w(0, z)) containing w(0, z).

Notation: given a neighborhood U of x, we will write WU (x) for w(Bk × {0}) ⊆ U ∩W (x).

2. w(−, z) : Bk → Ux∩W (w(v, z)) is a C1 diffeomorphism of Bk onto WU (z) which depends continuously
on z ∈ Bn−k in the C1 topology.2

We call the submanifolds W (x) the leaves of the foliation W , and we say that W is a C1 foliation if the wx
are diffeomorphisms.

Now we introduce two conditions on foliations which allow us to apply a Fubini-style argument, and show
that one is stronger than the other

Definition 74. Let Ln−k ⊆ N be an open local transversal for a foliation W , i.e. for all x ∈ L, TxM =
TxL⊕TxW (x). Let U = ∪x∈LWU (x) be a union of local leaves. The foliation is absolutely continuous if, for
any such L and U , there is a measurable family of positive measurable functions δx :WU (x) → R such that
for any measurable subset A ⊆ U ,

m(A) =

∫
L

∫
WU (x)

1A(x, y)δx(y)dµWU (x)(y)dµL(x).

We call the δx conditional densities.

Definition 75. Let W be a foliation of M and consider a pair of points x1 ∈M and x2 ∈W (x1). Let L1, L2

be two transversals to W such that xi ∈ Li. There are neighborhoods Ui 3 xi in Li and a homeomorphism
p : U1 → U2, called the Poincaré map, such that p(x1) = x2 and p(y) ∈W (y) for all y ∈ U1.

2A sequence of differentiable functions (fn)n∈N ⊆ C1(M,N) converges to f in the C1 topology if there exists a compact set
K ⊆ M such that f |Kc = fn|Kc for almost all n and fn, Dfn converge uniformly to f,Df on M,TM resp.
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We say that W is transversally absolutely continuous if p is absolutely continuous for any such transversals
Li, i.e. there exists a positive measurable function q : U1 → R such that for any measurable A ⊆ U1,

mL2(p(A)) =

∫
L1

1Aq(x)dµL1(x).

We call q the Jacobian of p.

Proposition 76. If W is transversally absolutely continuous, then it is absolutely continuous.

Remark 77. The converse is not true in general.

Proposition 78. Let W be an absolutely continuous foliation of a Riemannian manifold M , and let f :
M → R be a measurable function which is constant a.e. on the leaves of W . Then for any transversal L to
W , there is a measurable subset L̃ ⊆ L of full induced Riemannian volume in L such that, for every x ∈ L̃,
there is a subset W̃ (x) ⊆W (x) of full volume on which f is constant.

We say that two foliations W1,W2 are transversal if, for all x ∈M , TxW1(x) ∩ TxW2(x) = {0}.

Corollary 79. Let M be a connected Riemannian manifold, and W1,W2 transversal absolutely continuous
foliations on M of complementary dimensions, i.e. for all x ∈M , TxM = TxW1(x)⊕ TxW2(x) (direct sum
decomposition as vector spaces, but not necessarily as inner product spaces). Assume that f : M → R is
measurable which is constant a.e. on the leaves of W1 and W2. Then f is constant a.e. on M .

We are working with 3 foliations instead of 2, so we need to know that merging/summing the foliations (a)
makes sense, and (b) preserves absolute continuity.

Definition 80. Let L1, L2 be transversal foliations of dimensions d1, d2. We say that they are integrable
with integral hull W if there exists a (d1 + d2)-dimensional foliation W such that

W (x) =
⋃

y∈W1(x)

W2(y) =
⋃

z∈W2(x)

W1(z).

Lemma 81. Let W1,W2 be transversal, integrable foliations of a Riemannian manifold M with integral hull
W such that W1 is C1 and W2 is absolutely continuous. Then their integral hull W is absolutely continuous.

Lemma 82. Let W be an absolutely continuous foliation of a manifold Z and let N ⊂ Z be a set of measure
zero. Then there is a set of measure zero N1 ⊆ Z such that for any x ∈ Z \N1, the intersection W (x) ∩N
has conditional measure 0 in W (x).

6.3 Anosov property and Hölder continuity

We consider the special case of hyperbolic plane.

Example (70 continued). Let ı⃗ be the unit vertical tangent vector at the point (0, 1), so γ⃗ı(t) = (0, et). We
see that as the geodesic flow moves the horosphere S±(⃗ı) along γ⃗ı, the length along S±(γ⃗ı(t)) is scaled by a
factor of e−t, and

gt ◦ hs = hse−t ◦ gt.

At each point v ∈ SH, we have a 3-dimensional tangent space spanned by the tangent vectors to gt(v), h+t (v), h−t (v).
Taking v to range over SH gives subbundles Eo, Es, Eu of the tangent bundle TSH; in fact they define a
gt-invariant splitting, i.e.

gt(E
s
v) = Esgt(v) and TSH ' Eo ⊕ Es ⊕ Eu.

Furthermore, we have that |Dgt|Eo
v
| = 1, |Dgt|Es

v
| = e−t, and |Dgt|Eu

v
| = et.

This last property motivates the following definition.

Recall. A distribution on a manifold M is a subspace of the tangent bundle TM which can locally be written
as the span of a collection of linearly independent vector fields.
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Definition 83. Given a smooth flow ψt on a Riemannian manifold M , we let Eo denote the tangent
distribution to the orbits of the flow. A smooth flow ψt on a Riemannian manifold M is Anosov, or
hyperbolic if it does not have fixed points and there are distributions Es, Eu ⊂ TM and constants C, λ > 0
with λ < 1 such that for all x ∈M and t ≥ 0:

1. Esx ⊕ Eux ⊕ Eox = TxM .

2. ||dϕt,xvs|| ≤ Cλt||vs|| for any vs ∈ Esx

3. ||dϕ−t,xvu|| ≤ Cλt||vu|| for any vu ∈ Eux

We refer to Es, Eu as the stable (unstable, resp.) distributions of ϕ.

Fact 84. Es and Eu are invariant under dϕt.

The proof of Theorem 68 shows that for any Anosov flow, the stable and unstable distributions are integrable,
i.e. there exists stable and unstable foliations W s,Wu whose tangent distributions are Es, Eu.

Example (5 continued). The horseshoe is a hyperbolic system [5, Ch. 5]–note that it stretches the rectangle
in one direction but contracts it on the other.

It turns out that Example 6.3 can be generalized to (the unit sphere bundle SM of) an arbitrary Riemannian
manifold M of negative (bounded away from zero) sectional curvature: The stable (resp. unstable) subspace
of a unit tangent vector v ∈ SM are the stable (resp. unstable) Jacobi fields perpendicular to the geodesic.

Proposition 85. [3, IV.2.9] Let M be a Riemannian manifold and γ : R →M a unit speed geodesic. Let J
be a stable Jacobi field along γ perpendicular to ·

γ. Then if the sectional curvature of M along γ is bounded
from above by κ = −a2 ≤ 0, then

||J(t)|| ≤ ||J(0)||e−at and ||J ′(t)|| ≥ a||J(t)|| for all t ≥ 0 .

Let H1,H2 be subspaces of TxM . We define the distance dist(H1,H2) to be the Hausdorff distance between
the unit spheres in H1 and H2, i.e.

dist(H1,H2) = sup
v∈H1,|v|=1

inf
w∈H2,|w|=1

d(v, w) .

We say that H1,H2 are θ-transversal if minv∈H1w∈H2
||v − w|| ≥ θ. Writing Esox = Esx ⊕ Eox (and similarly

for Euo), we see that the compactness of M implies that there is a fixed θ > 0 such that the Es and Euo are
θ-transverse and Eso and Euo are θ-transverse (independently of x ∈M). The utility of θ-transversality lies
in the

Observation 86. Let θ > 0 be a real number and let H ⊆ TxM a subspace. Denote the unit sphere in a
vector space V by V1, and the projection onto a subspace W ⊆ V by (·)W . Then for all K ⊆ M which
is θ-transverse, the distance function dist(−,H) : K1 → R is uniformly equivalent to |(·)K |

|(·)H | , i.e. there exist
constants A,B > 0 such that for all unit vectors v ∈ K, A · dist(v,H) ≤ |vK |

|vH | ≤ B · dist(v,H).

Remark 87. Let H,K be the x, y-axes in R2. Then this is equivalent to the statement that on a compact
subset K ⊆

(
−π

2 ,
π
2

)
, there always exist constants (which depend on the compact set) A,B > 0 such that

A · θ ≤ tan θ ≤ B · θ for all θ ∈ K.

Lemma 88. Let ψt be an Anosov flow. Then for every θ > 0, there is some C1 > 0 such that for any
subspace H ⊂ TxM with the same dimension as Esx and θ-transversal to Euox and any t ≥ 0,

dist
(
dψ−t,x(H), Esψ−t(x)

)
≤ C1λ

tdist(H,Esx) .

Proof sketch. Let v ∈ H such that |v| = 1, and write v = vs + vuo where vs ∈ Esx and vuo ∈ Euox . Then by
definition of an Anosov flow, we have

|dψ−tvs| ≥ const. · λ−t|vs| and |dψ−tvuo| ≤ const. · |vuo| ,

and the lemma follows from Observation 86.
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Definition 89. Let (M,d) be a Riemannian manifold. A distribution E ⊆ TM is Hölder continuous if there
are constants A > 0, α ∈ (0, 1] such that

dist(Ex, Ey) ≤ A · d(x, y)α .

Remark 90. Given a hyperbolic flow ψt on a manifold M , it turns out we can define and adjusted metric
which is equivalent to the Riemannian metric but interacts nicely with the flow ψ. Given β ∈ (λ, 1), and for
some T > 0, define | · |′ by

|vo|′ = |vo| |vs|′ =
∫ T

0

|dψτ (vs)
βτ

dτ |vu|′ =
∫ T

0

|dψ−τ (vs)

βτ
dτ .

Then ψt is hyperbolic with respect to | · |′ and we can take C = 1 if we replace λ by β in Definition 83.

Proposition 91. The distributions Es, Eu, Eso, Euo of a smooth Anosov flow ψt are Hölder continuous.

Note that a proof of the above statement for Es implies a proof for Eu by reversing the time, so it suffices
to show the proposition for Es.

Proof. Write ψ = ψ1. Fix 0 < γ < 1, let x, y ∈ M , and choose d such that γd+1 < d(x, y) ≤ γd. Let
D ≥ max |dψ| and fix ε > 0. Let m be equal to the integer part of ln ε−ln γq

lnD = logD(ε/γ
q). Then

d(ψix, ψiy) ≤ Did(x, y) ≤ γqDi for i = 0, 1, . . . ,m .

Let γ � 1 so that m is large. Choose a system of small coordinate neighborhoods Ui ⊃ Viψi(x) such that
ψ−1(Vi) ⊆ Ui−1. Assume that ε is small enough such that ψi(y) ∈ Vi for all i.

Want: to estimate the distance between Esx and the parallel translate of Esy from y to x. Let vy ∈ Esψm(y)

such that |vy| > 0, and let vk := ψ−k(vy) := vsk+ vuok . Let ws, wuo ∈ Es,uoψm−k(x)
be arbitrary. Fix η ∈ (

√
β, 1).

Claim. For ε > 0 sufficiently small, |vuo
k |

|vsk|
< δηk for some small δ.

We show this by induction: Base case (k = 0): |vuo
0 |

|vs0|
< δ for ε sufficiently small, since Es(·) is continuous [5,

Prop. 5.2.1.].

Inductive step: Assume the claim is true for k. Let Ak := (dψm−k(x)ψ)
−1 and Bk := (dψm−k(y)ψ)

−1. By our
choice of D,

|Ak −Bk| ≤ C · γq ·Dm−k =: ξk ≤ const. · ε
for some constant C > 0 which depends on the 2nd derivatives of ψ. We also have that

|Akvsk| ≥ β−1|vsk| |Akvuok | ≤ |vuok | ,
vk+1 = Bkvk = Akvk + (Bk −Ak)vk = Ak(v

s
k + vuok ) + (Bk −Ak)vk .

Therefore by the triangle inequality,

|vuok+1|
|vsk+1|

≤ |Ak(vuok )|+ |Bk −Ak| · |vk|
|Ak(vsk)| − |(Bk −Ak)vk|

≤ (δηk + ξk)
|vk|

β−1(|vk| − |vuok |)− ξk|vk|

≤
(
(δηk + ξk)

√
β
)( 1

(1− βξk − δηk)

√
β

)
.

By our choice of m and D, we have that ξk = const. · γqDm−k ≤ const. · εD−k, and hence the inequality
for k + 1 for D sufficiently large, ε sufficiently small,

√
β < η, and δ small. For k = m, we get that

|vuom |/|vsm| ≤ δηm, and, by our choice of m,

|vuom |
|vsm|

≤ const. · γ−(q+1) ln η
lnD ≤ const. · dist(x, y)−

ln η
lnD .
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Finally the direct sum of two Hölder continuous distributions is Hölder continuous, so the result for Es (resp.
Eu) implies the result for Eso (resp. Euo).

6.4 Proof of absolute continuity and ergodicity

Proposition 92. [3, IV.2.10] Let M be a Riemannian manifold which is complete and simply-connected
with sectional curvature κM bounded by −b2 ≤ κM ≤ a2. Write dS for the distance in the unit tangent
bundle SM of M .

Then for every constant D > 0, there exist constants C = C(a, b) ≥ 1 and T = T (a, b) ≥ 1 such that for all
x, y with d(x, y) ≤ 1,

dS(ϕt(v), ϕt(w)) ≤ Ce−atdS(v, w) , 0 ≤ t ≤ R

where v and w are inward unit vectors to a geodesic sphere of radius R ≥ T in M with foot points x, y.

Remark 93. This result also holds for the manifolds under consideration here by applying the proposition
to the universal cover.

Theorem 94. Let M be a compact Riemannian manifold with a smooth metric of negative sectional cur-
vature. Then the foliations W s,Wu of SM into the normal bundles to the horospheres are transversally
absolutely continuous with bounded Jacobians.

Proof. Let L1, L2 be C1-transversals to W s, and let p, U1, U2 be as in Definition 75. Let Vi ⊆ Li be closed
subsets such that V2 contains an open neighborhood of p(V1).

Let Σn be the foliation of SM into ‘inward’ spheres of radius n (cf. Example 70), and let pn be the Poincaré
map for Σn and transversals Li. Note that by construction pn → p as n→ ∞.

Want to show: The Jacobians qn of pn are uniformly bounded in v ∈ V1 and n.

We show this by writing
pn = ϕ−n ◦ P0 ◦ ϕn (95)

where P0 : ϕn(L1) → ϕn(L2) is the Poincaré map along the vertical fibers of the natural projection π :
SM →M .

Since, for n � 0, the spheres Σn approach the stable manifolds/horospheres W s, the leaves of Σn are
uniformly transverse to L1 and L2, and pn is well-defined on V1.

Let vi ∈ Vi such that pn(v1) = v2. Then π(ϕn(v1)) = π(ϕn(v2)). Let

J ik = Jacobian of the time 1 map ϕ in the direction of T ik = Tϕk(vi)Li

= |det(dϕ1(ϕk(vi)))|T i
k
| ,

and let J0 denote the Jacobian of P0. Then by (95),

|qn(v1)| ≤

∣∣∣∣∣
n−1∏
i=1

(J2
k )

−1 · J(ϕn(v1)) ·
n−1∏
i=1

(J1
k )

∣∣∣∣∣ =
∣∣∣∣∣J(ϕn(v1))

n−1∏
i=1

(J1
k/J

2
k )

∣∣∣∣∣ . (96)

By Lemma 88, for n sufficiently large the tangent plane at ψn(v1) to the image ϕn(L1) is close to Esoϕn(v1)
.

Therefore, it is uniformly (in v1) transverse to the unit sphere SxM at x = π(ϕn(v1)) = π(ϕn(v2)), so J0 is
uniformly bounded above in v1.

Furthermore, we have that

dist
(
Euoϕk(v1)

, Euoϕk(v2)

)
≤ const. · d(ϕk(v1), ϕk(v2))α

≤ const. · e−akα ,
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where the first inequality is by Hölder continuity of Euo and the second is due to Proposition 92. Thus we
have that

dist(Tϕk(v1)L1, Tϕk(v2)L2) ≤ const. · e−βk

for some β > 0. Our assumptions on our metric imply that dϕ1(v) is Lipschitz in v, so therefore |J1
k − J2

k | ≤
const. · e−γk for some γ > 0, and compactness of M implies that |J ik| are uniformly bounded away from zero.
Thus3 we have shown that the right hand side of (96) is uniformly bounded in v and n. That the Jacobians
are uniformly bounded follows from the next lemma.

Lemma 97. Let (X,U , µ) and (Y,B, ν) be two compact metric spaces with Borel σ-algebras and σ-additive
Borel measures and let pn : X → Y , n = 1, 2, . . . , p : X → Y be continuous maps such that

1. All pn and p are homeomorphisms onto their images,

2. pn → p uniformly as n→ ∞,

3. There exists a constant C such that ν(pn(A)) ≤ Cµ(A) for all A ∈ U and all n.

Then ν(p(A)) ≤ Cµ(A).

Definition 98. Let M be a compact Riemannian manifold. Writing m for the Riemannian volume form on
M and λx for the Lesbesgue measure on SxM , we define the Liouville measure dµ on SM to be dµ(x, v) =
dm(x)× dλx(v).

Claim. The Liouville measure is invariant under the geodesic flow.

We now have all the tools at our disposal to prove Theorem 66.

Proof of Theorem 66. Because the foliation Wu is absolutely continuous and W o is C1, the integral hull
Wuo is absolutely continuous by Lemma 81. Let f be a ϕ-invariant function. By Proposition 10, we can
WLOG assume that f is strictly ϕ-invariant. By Proposition 72, there is a set of measure zero Nu such that
f is constant on the leaves of Wu in SM \Nu. By Lemma 82, there is a set of measure zero N ′ such that
Nu is a null set in each Wuo(v) and in Wu(v) for any v ∈ SM \N ′. Thus f is constant a.e. on the leaf Wu,
and, since f is strictly ϕ-invariant, it is constant a.e. on the leaf Wuo. Hence f is constant a.e. on the leaves
of Wuo, and we can conclude by Corollary 79.

7 Conclusion

In this note, we’ve barely scratched the surfaces of the study of dynamical systems and dynamical properties
of geodesic flow. In particular, we fail to treat spectral methods, we do not define mixing, and we omit
discussion of Poincaré’s method, which inspired the name of the map in Definition 75. Furthermore, one
can show that the geodesic flow on surfaces of negative curvature are Bernoulli [17] and are exponentially
mixing (see, e.g. [18] and the references therein). However, we hope this exposition motivates the reader4

to further one’s study in some of the areas mentioned above.
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